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ABSTRACT: Analysis of observed protein sequences across all
species within the UniProtKB/Swiss-Prot data set reveals CQWW
as the shortest absent stretch of amino acids. While DNA can be
found encoding the CQWW sequence, it has never been observed
to be translated or included in manually curated sets of proteins,
existing only in predicted, tentative sequences and in a single
mature antibody sequence. We have synthesized this “nullomer”
peptide, along with 13 derivatives, reversed, truncated, stereo-
isomers, and alanine-scanning peptides, conjugated to polyarginine
stretches to increase cellular uptake. We observed their impact
against a healthy neuronal line and six patient-derived glioblastoma
cell lines spanning three clinical subtypes. Results reveal IC50 values
averaging 4.9 μM for inhibition of cell survival across tested oncogenic cell lines. High-content phenotypic analysis of cellular
features and reverse-phase protein arrays failed to discern a clear mode of action for the nullomer peptide but suggests mitochondrial
impairment through the inhibition of GSK3 and isoforms, supported by observations of reduced mitochondrial stain intensities.
With a recent increase in interest in nullomer peptides, we see the results in this study as a starting point for further investigation into
this potentially therapeutic peptide class.

■ INTRODUCTION
The term “nullomers” was introduced in 2007 to refer to DNA
sequences absent from the human genome.1 These nullomers
have subsequently been identified across a range of domains
and species, finding uses as molecular barcodes in tamper-
proof labeling of evidence from crime scenes2 and in the
creation of homology models investigating genome evolution.3

Vergni and Santoni assigned sequences to a category named
“high-order nullomers”.4 These are sequences that remain
nullomers when mutations are introduced. In the same work,
they analyzed nullomer occurrences in CpG islands, noting
them to be present at a higher rate than expected but not high
enough to suggest that nullomer formation is driven solely by
natural selection. They stated nullomers had “their own
peculiar structure and are not simply sequences whose CpG
frequency is biased”.4 CpG island nullomer occurrences were,
however, given as a potential explanation over natural selection
by Acquisti et al.,5 who argued that the hypermutability of
CpG islands contributes to rare sequences becoming
nullomers, coupled with the fact that many in humans differ
by only one residue, the role of mutation is strengthened in the
localization and preservation of nullomers across species.5

Similarly, Georgakopoulos-Soares et al. use nullomers to build
phylogenetic classifiers across vertebrates,6 while a wider study
by Garcia et al. classifies 22 organisms across archaeota,
bacteria, and eukaryotes using only the shortest nullomers
from each genome.7 In an approach using codon-translated

amino acids, Mouratidis et al.8 define sets of “quasi-prime”
peptides or short peptide k-mers9,10 as being sequences found
in only one species and propose using this data for species
identification from biological samples. The idea of searching
for absent peptide sequences appears in literature before this
terminology referring to DNA was established, with Otaki et al.
identifying 12,080 “zero-count” pentamer peptides from 1.5
million protein sequences obtained from public databases.11

While the absence of some pentamers may be explained by the
low occurrence rates of their constituent amino acids,
calculations accounting for amino acid propensities demon-
strated that many should have been expressed in a theoretical
genome. The opposite was also observed, with pentamers
composed of low-propensity amino acids being unexpectedly
present. Otaki et al. explained this through the evolutionary
suppression of these peptide sequences,11 an explanation that
is backed up by Tuller et al. through their discovery that many
of the absent pentamer sequences are coded for in noncoding
regions of the genome.12
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Attempting to understand potential evolutionary pressure on
nullomers, Navon et al. observed expected rates of peptide
triplets occurring in the E. coli proteome, noting under-
expression in only four peptide triplets: CMY, GPP, MWC,
and WMC.13 While examination of triplets undoubtedly leaves
out longer interesting sequences, Ung and Winkler identified
triplets as occupying a special area of chemical space,
possessing optimal ligand efficiency and proposing tripeptide
motifs as being the optimal size molecule for biological
signaling.14 Embedding these sequences in GFP and mntA
reduced in vivo and in vitro expression levels not only of the
proteins themselves but also their unmodified partners during
coexpression. This is explained for the CMY and GPP triplets
through observed interactions with ribosomal nucleotides
A2062 and U2585, known for their involvement in ribosome
stalling.15,16 They note that unlike in E. coli, all triplets are
observed at expected rates when interrogating the human
proteome.13 In 2019, Mittal et al. reported the counts of all
dimer, trimer, tetramer, and pentamer peptides present within
UniProtKB/Swiss-Prot, although no synthesis or biological
testing was performed on newly discovered nullomer
peptides.17 Later, the propensity of amino acid stretches in
ordered versus intrinsically disordered proteins was explored
by Mittal et al., leading to the identification of 36 unique
tetramer peptides exclusively found within intrinsically
disordered proteins18,19

Closely related to nullomer peptides, rarely observed amino
acid stretches have also been studied by Capone et al., who
assert that the minimal sufficient antigenic determinants of a
protein could be encoded in just five rarely seen amino acids.20

Complementing this, Patel et al. noted that these rare
sequences could be used to enhance antigen-specific immune
responses when dosed alongside adjuvant vaccines.21 It was
also noted by Koulouras et al. that human viruses rarely share
human nullomers, facilitating host mimicry and immune
evasion,22 an interesting example of this being highlighted by
Silva et al. in their studies on the Ebola virus, identifying
human nullomers which consistently appear in two viral Ebola
proteins.23 Rare sequences were observed at higher than
expected rates in proto-oncogenes by Trost et al.24 and
Tsiatsianis et al.25 This points to a potential safety mechanism
being inbuilt into these proto-oncogenes, facilitating natural
identification and disposal and spurring interest in nullomer
epitopes within immunology and oncology for the potential of
these rare sequences to aid the immune system in the
identification of cancerous cells. In 2012, an early stage drug
discovery study by Alileche et al.26 synthesized pentamer
peptide nullomers and discovered two peptides, NWMWC and
the permutation WCMNW, that caused mitochondrial impair-
ment in both normal cell lines and cancer cell lines.26 In a
follow-up study, the lethal effect of these pentamers was further
explored using the NCI-60 panel27 containing 60 cell lines
derived from human cancers across nine different organs. Both
NWMWC and WCMNW were lethal to a high fraction of
oncogenic cell lines while not killing the majority of
nononcogenic cell lines tested. Notably, the peptides were
able to kill both drug-resistant and hormone-resistant prostate
and breast cancer cell lines, as well as cancer stem cells,28

through a mechanism of mitochondrial impairment and ATP
depletion.26 More recently, Ali et al. investigated WCMNW
peptide activity in a triple-negative breast cancer mouse model
using transcriptomics techniques to reveal the downregulation
of key genes involved in the mitochondrial TCA cycle.29

Standard medicinal chemistry approaches including con-
jugation and derivatization of peptides to include non-natural
amino acids, cyclization, and other stabilization strategies are
now available to overcome many of the limitations present
with the use of peptides as therapeutics, improving delivery
pharmacokinetics and increasing proteolytic stability.30,31 Over
80 peptide drugs are currently marketed for a variety of
diseases.32,33 This route from peptide to stable and efficacious
treatment suggests the approach of using nullomers as a
starting point to find new first-in-class therapeutics is both
valuable and viable.
We developed our own implementation of a nullomer and

rare sequence discovery algorithm named Aminonaut. This
implementation written in Python allows easy integration into
existing analysis pipelines and workflows. To facilitate reuse
and open science, Aminonaut source code is available on
GitHub (https://github.com/stevenshave/Aminonaut) and
has also been added to the Python Package Index, allowing
installation with a single command to nearly all modern
Python environments. We applied Aminonaut to the February
2018 UniProtKB/Swiss-Prot database.34,35 This article docu-
ments our identification and initial biological evaluation of the
tetramer nullomer peptide CQWW conjugated to a poly-
arginine sequence to ensure cellular uptake, with its striking
absence begging the question: what specifically makes this
sequence “forbidden” in vivo and what might be the biological
effects of such a molecule?

■ RESULTS AND DISCUSSION
Identification and Synthesis of CQWW. We developed

the Aminonaut package to specifically look for nullomer and
rare protein sequences. Using a k-amino acid-sized window,
this window is moved across protein sequences, counting
occurrences of k-mers, where k is 2, 3, 4, 5, and 6. Further
collation and statistical analysis are also built into the software.
We used this software (see Methods) to examine nullomer and
rare sequences within the UniProtKB/Swiss-Prot February
2018 release (see Supporting Information). Analysis of
pentamer sequences reveals 86,261 nullomer sequences,
representing 2.7% out of the total 3.2 million possible
pentamers. In line with published results by Mittal et al.,17

we also identified the single missing tetramer, CQWW,
cysteine−glutamine−tryptophan−tryptophan, from the col-
lected tetramer counts. A BLAST search revealed the sequence
is coded for in many proposed and hypothetical genomes,36

ranging from bacteria, oomycetes, to rotifers; however, they are
absent from the carefully curated UniProtKB/Swiss-Prot
releases, pointing to rare status and absence in proteomes
captured in UniProtKB/Swiss-Prot. In 2021, the CQWW
sequence was discovered in a human antibody immunoglobu-
lin heavy chain in a study of the autoimmune disease
Myasthenia gravis, whereby antibodies target neuromuscular
proteins. Analysis of left and right sequence truncates of the
CQWW tetrapeptide reveals CQW and QWW present 1251
and 1401 times, respectively, in the data set, well in line with
expected occurrence rates. Interestingly, the CQW N-terminal
trimer truncate peptide is found in patent literature for
antibacterial use against Listeria and Bacillus.37 We did not find
any biological effects noted for the QWW C-terminal trimer
truncate in the literature or patents. CQ, QW, and WW dimers
were observed at the expected rates. To find an explanation for
the rare status of CQWW, we modeled the peptide (see
Methods) to investigate if any intrinsic steric clashes or
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Figure 1. (A) 3D model of the CQWW peptide with residue labels shown in red. (B) Dose-dependent effect of peptide 2 (RRRRRCQWW) on cell
survival across a range of cell lines, with fitted IC50 values shown below. (C) Representative live cell brightfield images of peptide 2
(RRRRRCQWW, 6 μM) against the glioblastoma stem cell line (GCGR-E28) versus normal neural stem cells (GCGR-NS9FB_B) after 3 h of
incubation. (D) 3D principal component analysis (PCA 1, 2, and 3) from multiparametric cell painting image analysis of the GCGR-E13 cell line. A
clear dose-dependent phenotypic profile with marker sizes denoting the concentration range of 1−16 μM is seen for peptide 2 (RRRRRCQWW,
red) vs polyarginine control (RRRRR, green) and DMSO (blue).
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problematic conformational states were revealed (see Figure
1A). Aqueous solubility prediction was difficult as many online
tools require query peptides to be longer than the CQWW
tetramer, forcing us to turn to more traditional small-molecule
solubility predictors. The SwissADME web service38 returns a
range of predicted solubilities for the free peptide with poor
agreement, ranging from 51 nM to 29 mM; however, these
techniques are optimized for small molecules, adhering to
more traditional medicinal chemistry rules.
The absent tetramer CQWW (peptide 1, Table S3) was

synthesized using standard Fmoc peptide synthesis on a solid
support (see Supporting Information). Chemical stability was
observed via high-performance liquid chromatography
(HPLC) (see Supporting Information and Figures S1 and S2
for results) over 72 h in phosphate buffered saline (pH 7.5),
resulting in the formation of the disulfide bridged dimer form,
confirmed by the addition of TCEP. This disulfide bridge-
induced dimer formation was not observed upon the
production and evaluation of the polyarginine conjugate
RRRRRCQWW (peptide 2, Table S3). For this reason, and
to improve peptide cell permeability,39,40 we produced
subsequent peptides in this polyarginine conjugate form,
following the approach taken by Alileche et al.28 of attaching a
poly arginine chain to ensure cell penetration, all of which did
not dimerize. In addition to peptide 2, we produced a D-
stereoisomer form of RRRRRcqww (peptide 3, Table S3), a
reversed form of RRRRRWWQC (peptide 4, Table S3), a
reversed D-stereoisomer form of RRRRRwwqc (peptide 5,
Table S3), alanine-scanning41 peptides (peptides 6−9, Table
S3), and the N-terminal and C-terminal triplet truncates
RRRRRCQW and RRRRRQWW (peptides 10 and 11, Table
S3). Comparing the observed and expected counts based on
either codon frequency or amino acid occurrence rates
indicated that a majority of single amino acid mutations of
CQWW appear at lower-than-expected frequencies. The

highest count being for YQWW (207 occurrences) and the
rarest (excluding glutamine) being CMWW (3 occurrences),
see Table S1. Variations around the second position (glutamic
acid) were found with lower counts than for other positions.
To understand the implication of the cysteine residue, we
produced low occurrence-count cysteine replacements (see
Table S1) using methionine, histidine, and phenylalanine
(peptides 12−14, Table S3). In addition to these synthesized
peptides, we purchased a polyarginine control peptide, RRRRR
(peptide 15, Table S3).
Peptides were tested in an automated image-based high-

content42 cell painting43,44 assay that was originally developed
to explore the mechanism of action of pharmacological and
genetic perturbations within cells,45 as well as a live cell
imaging assay against six patient-derived glioblastoma cell lines
(GCGR-E13, GCGR-E28, GCGR-E21, GCGR-E57, GCGR-
E31, and GCGR-E34), covering classical, mesenchymal, and
proneural subtypes, respectively (see Methods and Figure 1B−
D), along with a healthy human fetal neuronal stem cell line
(GCGR-NS9FB_B).
Cell survival was quantified by nuclei counts from the

Hoechst dye-stained nuclei and IC50 values calculated along
with 95% confidence intervals (Figure 1B; see Table S2 for full
details). Table 1 shows a summary of cellular IC50s derived
from these nuclei counts.
Alanine-scanning peptides (Table 1, peptides 6−9) clearly

demonstrate tolerance for alanine replacement at the second
glutamine position, with peptide 7 (RRRRRCAWW) retaining
an average IC50 of 14.8 μM across cell lines, while alanine
replacement in other positions results in IC50 values greater
than 100 μM (apart from the GCGR-E21 cell line with an IC50
of 75.0 μM�see Supporting Information Table S2 for full IC50
listings). The phenotypic effect of the peptides was visualized
by live cell imaging (Figure 1C, IncuCyte live cell imager) and
also quantified via image analysis of cells labeled with the cell

Table 1. Cellular IC50s (μM) as Measured by Nuclei Counts for Nullomer and Derivative Peptidesa

aGradient between blue and red denotes high to low IC50, respectively. Peptides grouped by derivatives (2−5), alanine-scanning peptides (6−9),
rare derivative sequences (10−14), and finally control (15).
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painting reagents (see Supporting Information) followed by
image analysis using Cell Profiler (cellprofiler.org). Multi-
parametric outputs from Cell Profiler were processed using
Phenonaut46 [v 2.0.3] (see Jupyter notebook ‘Phenonaut_-
processing_of_nullomer_data.ipynb’ in the Aminonaut repo-
sitory for methods and code used). Figure 1D shows a 3D
principal component plot with a strong, dose-dependent
phenotype for the nullomer peptide 2 when compared with
the control polyarginine peptide 15 (RRRRR). Peptide 2 also
showed approximately 1.5- to 2-fold selectivity for reduction in
nuclei counts for glioblastoma stem cells compared to normal
neural stem cells (GCGR-NS9FB_B). Peptides 2, 5, and 7
were deemed to have the most merit for mode of action
determination using reverse phase protein arrays (RPPAs) (see
Supporting Information for methods). Analysis of gene
networks showed no clear mode of action, apart from
downregulation of GSK-3β (see Supporting Information),
which, among other functions, is noted as crucial for mediation
of mitochondrial function.47−50 Analysis of mitochondrial stain
intensities captured during the cell painting assay reveals a
dose-dependent reduction in intensity for all cell lines (see
Supporting Information Figures S3 and S4).

■ METHODS
Bioinformatics. With an abundance of literature algo-

rithms published to identify nullomers in protein and peptide
forms,1,51−53 we drew on their descriptions to create our own
custom implementation, filling a gap in Python bioinformatics
tools and better integrating with our existing codebase and
workflows. This took the form of a Python (version 3.8.5)
program utilizing the NumPy library (version 1.19.1) for
efficient array operations. This program was further developed
into a suite of tools for interrogation of the UniProtKB/Swiss-
Prot database and is available under the open source MIT
license as a source code repository at https://github.com/
stevenshave/Aminonaut.
After downloading the XML version of the February 2018

UniProtKB/Swiss-Prot database,34,35 the find_nullomer_mo-
tifs.py program was run, passing as arguments the XML file,
followed by an output CSV file, and finally, the length of
peptides to be counted. This was run for lengths of 2, 3, 4, 5,
and 6 amino acids, directing output to different CSV files for
each length. The 5- and 6-mers were captured with a “.csv.gz”
file extension, directing the program to apply gzip compression.
Peptides were synthesized using a standard Fmoc solid-

phase peptide synthesis. Further details are given in Supporting
Information.
Modeling of the CQWW peptide was achieved using the

PEPstrMOD service54 with default settings, embedding the
peptide between alanine dimers to model a sequence of eight
amino acids representative of the CQWW peptide embedded
within a protein. Removal of flanking alanine residues and
visualization of the remaining CQWW peptide was achieved
using PyMol (v 2.5.0a0).
Methods for cell culture and phenotypic profiling are

detailed in the Supporting Information accompanying this
article.

■ CONCLUSIONS
In this article, we have demonstrated the steps taken in our
identification of the short CQWW peptide nullomer
conjugated to a polyarginine sequence and profiled its

biological activity using live cell and high-content imaging
along with proteomics analysis using RPPA. While mechanism-
of-action analysis with RPPA was inconclusive, perturbation of
GSK-3 isoforms (see Supporting Information) aligns with the
mitochondrial activity noted by Alileche et al.28 and our
observed concentration-dependent reduction in mitochondria
stain intensity. Alanine scanning shows a clear tolerance for
changes to the glutamine in position 2, with efficacy retained
upon replacement with an alanine. Interestingly, the backward
and D-stereoisomer sequences retain similar activity across cell
lines. The use of peptides for fundamental biology and drug
discovery is rapidly increasing due to the size of addressable
and explorable peptide chemical space, ease of chemical
manufacture or biological expression, and their massive
molecular recognition potential. To this end, and with peptidic
drugs making up to 7% of new US FDA approvals from 2015
to 2019,55 we are said to soon be facing “the coming peptide
tidal wave”.56 While nullomers and other rare peptides are
poorly understood, it is vital that the body of knowledge on
these special sequences is expanded and their full potential
explored in the search for new first-in-class therapeutics.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.4c08860.

Methods for chemical synthesis, cell culture, phenotypic
screening, and RPPA analysis (PDF)
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