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A B S T R A C T / O U T L I N E   

The field of high content imaging has steadily evolved and expanded substantially across many industry and academic research institutions since it was first described 
in the early 1990′s. High content imaging refers to the automated acquisition and analysis of microscopic images from a variety of biological sample types. Integration 
of high content imaging microscopes with multiwell plate handling robotics enables high content imaging to be performed at scale and support medium- to high- 
throughput screening of pharmacological, genetic and diverse environmental perturbations upon complex biological systems ranging from 2D cell cultures to 3D 
tissue organoids to small model organisms. In this perspective article the authors provide a collective view on the following key discussion points relevant to the 
evolution of high content imaging: 

• Evolution and impact of high content imaging: An academic perspective 
• Evolution and impact of high content imaging: An industry perspective 
• Evolution of high content image analysis 
• Evolution of high content data analysis pipelines towards multiparametric and phenotypic profiling applications 
• The role of data integration and multiomics 
• The role and evolution of image data repositories and sharing standards 
• Future perspective of high content imaging hardware and software   

1. Introduction 

High content imaging encompasses and integrates the research dis
ciplines of cell biology, photonics, laboratory automation and image 
analysis to robustly interrogate the phenotypes of individual cells, 
multicellular tissue samples and small model organisms at scale. The 
field of high content imaging (HCI), also known as high content 
screening (HCS), was inspired and evolved from flow cytometry and 
digital imaging microscopy technologies which enable multiplex label
ling of biomarkers on a cell-by-cell basis [1]. In 1997, Cellomics Inc., one 
of the pioneers of HCI, developed the first fully integrated HCI platform 
(ArrayScan) for HCS applications [2]. The ArrayScan and subsequent 
HCI platforms from other groups provided end-to-end hardware and 
software solutions for automating image acquisition, image processing, 
image analysis, image archiving, and image visualisation (Fig. 1). 

These developments revolutionised microscopic analysis of cells and 
supported a shift away from subjective reporting and manual quantifi
cation of observations to fully quantitative cell biology permitting an 
accelerated approach to new knowledge generation. Thus, similarly to 
advances in next generation sequencing technology, automated HCI 

contributes to the modern era of hypothesis-free “discovery science” 
complementing more traditional hypothesis-driven research paradigms. 
The significant efficiency gains and accelerated discovery of potential 
new therapeutic targets, chemical starting points and early prediction of 
toxicity provided by HCI was a major incentive supporting early adop
tion of the technology by the pharmaceutical industry. Academic groups 
have subsequently contributed powerful and accessible image analysis 
software and machine learning applications to enable deep phenotyping 
of cell biology (e.g. therapeutic mechanism-of-action) as well as 
increased biological sample complexity. Together in close partnership, 
academia and industry have made rapid progress in collecting and 
analysing HCI data. 

Initial HCS was typically performed in 2-dimensional cell cultures 
formatted in 96- or 384-multiwell plates using platform proprietary pre- 
defined image analysis algorithms capable of extracting one to a few 
quantitative measurements per condition. Subsequent evolution of both 
commercial and general-purpose open source image analysis software 
packages including Definiens [3], CellProfiler [4] and Advanced Cell 
Classifier [5], allowed non-experts in image analysis to create sophisti
cated bespoke algorithms tailored towards complex phenotype 
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quantification. This rapid evolution of free, general purpose software 
provided an important alternative and complementary approach to 
proprietary high throughput screening technologies which emerged as 
the predominant drug discovery engine of the biopharmaceutical in
dustry in the early 1990s. 

As a result of sequencing the human genome and subsequent ad
vances in understanding disease at the genetic level, the pharmaceutical 
industry invested heavily in target-directed high throughput screening 
technologies in what was perceived as a new era of rapid and efficient 
discovery of highly selective and potentially personalised drug candi
dates. While many high throughput screening campaigns and modern 
target-led drug discovery strategies have produced remarkable successes 
in delivering effective medicines, high attrition rates in late stage clin
ical development prevail [6]. Advances in next generation sequencing 
(NGS) have revealed remarkable molecular heterogeneity within and 
between patients and adaptation in underlying disease mechanisms for 
many disease types that evade treatment. These findings starkly high
light the challenges in predicting which drugs and which drug targets 
will translate into clinically meaningful efficacy for many complex dis
ease areas. It has become increasingly apparent that genes and proteins 
function as parts of integrated signalling pathway networks which 
contribute to extensive compensatory capacities and plasticity in cell 
fate. In contrast to traditional high throughput screening assays that 
measure the activity of single readouts in targets of interest, HCS 
promises broad attainment of deeper phenotypic knowledge about the 
effects of therapeutics, capturing complex signals like interacting sig
nalling pathways, transcription factor dynamics, and polypharmacology 
[7–9]. Thus the advent of HCS represents an important evolution in the 
drug discovery paradigm from reductionist target biology to more sys
tems level understanding of cell phenotype. 

Faithfully modelling human disease in medium- to high-throughput 
assays is perhaps the most significant challenge in drug discovery. 
However, recent technological breakthroughs in human induced 
pluripotent stem cells (iPSC), creation of genetically well-defined 
models of disease through CRISPR-Cas9 gene editing, derivation of 
primary human cells, and advances in 3-dimensional (3D) in vitro 
biology techniques are converging towards accurately recapitulating 
specific segments of disease pathology in screening formats [10] (Fig. 2). 

Multicellular co-culture, microphysiological systems (MPS), 3D micro
tissue spheroid, and organoid models have been gaining in popularity 
and better represent the complex tissue architecture found in vivo. 
Moreover, such models are particularly well suited for the latest high 
content imaging platforms which provide spatial resolution in X, Y, and 
Z dimensions [11–14] (Fig. 2). Recent advances in 3D bioprinting and 
miniaturisation of microfluidic devices further improve assay repro
ducibility and support the generation of homogeneous multicellular 2D 
and 3D models in standard microtiter plate screening formats [15,16] 
(Fig. 2). 

The development of more disease-relevant models plays to the 
strength of academic research centers with deep understanding of dis
ease biology and access to clinical specimens, which represent fruitful 
areas for academic-industry collaboration in which to maximise impact. 

Analytical challenges scale alongside assays that capture increasing 
amounts of broad (many measurements) and deep (high number of 
multiparametric features) data. Early efforts to deal with data on this 
scale relied upon expert knowledge to craft tools for signal extraction 
and analysis. Advances in the application of Artificial Intelligence/Ma
chine Learning (AI/ML) technology coupled with significant improve
ments in computational power have found numerous applications in the 
drug discovery process [17,18], which has impacted every area of the 
drug discovery pipeline from target identification to clinical trials [19]. 
This revolution has been driven by significant improvements in 
computational power, with consumer grade graphics cards delivering 
teraflops of performance coupled with the open nature of communities 
supporting these efforts and releasing powerful open source toolkits 
[20]. Consequently, AI/ML techniques are routinely applied to high 
content imaging data to classify cell phenotypes and predict therapeutic 
mechanism-of-action [21,22,23]. Artificial neural networks (ANNs) and 
deep learning are growing areas of interest in biological image analysis 
[24] and are being applied to a variety of prediction tasks. Convolutional 
Neural Networks (CNNs) have been particularly impactful for image 
analysis, enabling deep architectures [25] and techniques to be applied 
in unsupervised [26,27] and supervised settings for small molecule 
mechanism-of-action prediction [28,29]. 

The term “phenomics’’ was first coined to describe the comprehen
sive study of phenotypes [30], which provides functional context to 

Fig. 1. Evolution of High Content Imaging hardware and software solutions, including open-source software for raw image analysis and secondary data analysis has 
contributed to increased adoption and variety of HCI applications. These developments include more sophisticated analysis of biological samples of increasing 
complexity including co-cultures and 3D models and integration of high content imaging with other single cell multiomics technologies. 
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genomic, transcriptomic and proteomics data. Integration of high con
tent imaging data with other multiomics data types using AI/ML is 
required to provide a systems biology level understanding of cell 
phenotype and therapeutic mechanism-of-action. Multidisciplinary 
research collaborations across academic and industry sectors are 
contributing to a new era of “phenomics drug discovery” where HCI is 
core to the development of more disease relevant and mechanistically 
informative drug discovery. Below we discuss the evolution and impact 
of HCI from both academic and industry perspectives. We describe the 
significant advances in HCI analysis and the development and applica
tion of multiparametric phenotypic profiling which has revolutionized 
the field. We describe the important role of image data repositories and 
image data sharing standards to further advance the HCI field and we 
provide our future perspectives on the next phase of HCI hardware and 
software evolution. 

2. Evolution and impact of high content imaging: an academic 
perspective 

The academic sectors’ considerable strengths in biology and data 
science are contributing significantly to the evolution of HCI. Various 
academic research groups have gained deep knowledge of specific areas 
of human disease biology from several years and even decades of intense 
and focused research effort. In addition, academic research centres with 
close links to the clinic and ready access to human volunteer and/or 
patient samples have provided a major contribution to the development 
and application of patient derived cell and tissue models for trans
lational research. For example, development of co-culture protocols 
[31] have enabled production of large amounts of conditionally 
reprogrammed cells from accessible biopsy specimens, from both 
healthy tissues and tumor samples that have subsequently been applied 
in HCI studies [32]. Early adoption of HCI capabilities in academia 
pushed the boundaries of sample complexity, incorporating complex 
tissue samples such as coeliac tissue biopsies into primary screening 
assays [33]. Following many years of academic research efforts the 
generation and culture of 3D organoid tissues is now routine [34] and 
can be performed at scale for high throughput screening and HCI ap
plications [11,12]. The adaptation of fresh human tissue samples for in 
vitro cell culture, ex vivo tissue slice and organoid translational research 
applications overcome many of the disadvantages of using transformed 

cell lines for drug discovery [34,35]. While primary human and 
patient-derived ex vivo models are of high value, the relevant tissue is, in 
many cases, difficult to obtain, or available only after the patient’s death 
(e.g. heart, brain, and healthy liver). A major breakthrough in the ability 
to develop tissue specific cell-based disease models, including 
patient-derived cell assays at scale, has been achieved through the 
development of human induced pluripotent stem cell (iPSC) technology 
[36]. Protocols to derive iPSCs were first developed in academia and 
academia continues to be an important source of iPSC models, including 
specialised iPSC lines with various gene editing strategies to create 
genetically well-defined models of disease and “normal” gene corrected 
counterparts. Many human iPSC derived cell models have been adapted 
for high throughput and high content imaging formats [37–39]. Addi
tionally, approaches to recapitulate disease biology with gene editing in 
otherwise normal tissue derived iPSC models to specifically map geno
type to phenotype and simulate disease trajectories are in early stages of 
academic development [40]. However, maintaining human iPSC cell 
lines and optimising differentiation protocols at scale with high levels of 
consistency for screening applications requires significant resources and 
close adherence to standard operating procedures typically found in 
industry or core academic research facilities. 

Data science is a rapidly emerging field in biomedical research which 
has been driven by the need to manage, integrate and interpret big data 
sets generated through advances in technology platforms such as next 
generation sequencing, proteomics, digital pathology and high content 
imaging. Academia has played a major role in developing data science 
by bringing together different disciplines from the numerical sciences 
(mathematics, statistics, computer science, bioinformatics) and other 
diverse fields such as astronomy and engineering to solve similar data- 
related problems, such as scalable data processing and data visual
isation. This collaborative effort has led to many critical open source 
software libraries that are essential to data-driven initiatives, as well as 
the development of pioneering AI/ML approaches that reach across 
domains, and commonly into biomedical research applications. Early 
data science contributions to HCI from academia included the provision 
of open source image analysis solutions (e.g. CellProfiler [4]) that were 
readily compatible with automated analysis across large numbers of 
images. Additional early open source software developments included 
tools that allowed biologists to apply machine learning based classifi
cation of cell phenotypes from images such as CellClassifier [41], 

Fig. 2. Recent advances in human iPSC tech
nology, patient-derived models, 3D bioprinting, 
3D tissue organoids, CRISPRCas9 gene-editing 
and novel microfluidic devices are converging 
with the latest advances in high content imag
ing to produce more disease-relevant and 
mechanistically-informative in vitro models for 
drug discovery and basic research. Further 
integration of high content imaging data with 
orthogonal multiomics datasets and emerging 
AI/ML solutions are contributing to the new 
field of “phenomics”.   
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Advanced Cell Classifier [5], ilastik [42] and KNIME [43]. The provision 
of both commercial software (e.g. Definiens) and open source tools 
combined with rapid advances in computing power and multiparametric 
imaging, facilitated faster and more reliable analyses that revealed more 
nuanced insights and brought forth a new era of high content imaging 
known as “phenotypic profiling”. We are currently living in this era, 
where data science and AI/ML are rapidly improving insights and all 
intermediate steps from experimental design to data acquisition and 
data processing. 

Further evolution of phenotypic profiling methods in academia 
included development of the Cell Painting assay: a relatively low cost 
multiplex assay that "paints the cell" with multiple fluorescent dyes to 
obtain quantitative phenotypic profiles of cell morphology without the 
need for specific antibody labelling or genetically engineered probes 
[44,45]. The canonical Cell Painting assay multiplexes six fluorescent 
dyes, imaged in five spectral channels, to reveal eight broadly relevant 
cellular components or organelles. The Cell Painting assay is flexible, 
limited only by fluorescent channel overlap, and profiles generated are 
robust across a number of microscope setting changes as measured by 
percent replicating metrics [46]. The Cell Painting assay can be modified 
to specific screening conditions by, for example, swapping an existing 
canonical channel with a targeted dye to a specific biological entity of 
interest, such as adding a stain for lipid droplets in a screen for metabolic 
disease treatments [47]. Studies have also shown that brightfield im
aging may contain just as much if not more detail than the unbiased Cell 
Painting stains [48,49], but this performance strength may be experi
ment specific [46]. In the future, we may modify the Cell Painting panel 
to flexibly focus on specifically known biological markers while allow
ing the brightfield channel to drive unbiased cell morphology analyses. 
In a pilot study of bioactive compounds, the Cell Painting assay detected 
a range of cellular phenotypes and the multiparametric phenotypic 
profiles were used to cluster compounds with similar annotated protein 
targets or chemical structure [45]. A recent study to evaluate if human 
genes can be functionally annotated using the Cell Painting assay 
demonstrated that 50% of the 220 genes tested yielded detectable 
morphological profiles which group into biologically meaningful gene 
clusters consistent with known functional annotation [50]. The 
JUMP-CP consortium (Joint Undertaking for Morphological 
Profiling-Cell Painting) led by the Broad Institute at MIT and Harvard 
and including several pharmaceutical industry partners aims to create a 
large public Cell Painting dataset of over 136,000 genetic and chemical 
perturbations [51]. It is anticipated that this public resource will ca
talyse new drug discovery programs across both academia and industry 
by enabling the prediction of compounds’ mode of action and toxicity, 
characterising disease phenotypes and uncovering new therapeutic 
target biology. 

Academic research funding has generally been directed towards 
answering hypothesis-driven research questions and hypothesis-free 
applications have historically been dismissed by funding panels as 
“fishing expeditions”. However, with the abundant successes that 
sprung from the human genome project [52], hypothesis-free research 
has demonstrated significant value in basic and translational academic 
research and yielded a new discipline of “discovery science”. HCI assays 
can be designed to both test specific hypotheses and enable robust hy
pothesis generation with discovery science. Early adopters in academia 
employed HCI assays to identify compounds which control centrosome 
duplication [53]. Other groups combined HCI with siRNA screens to 
support early functional genomic screens [54,55] to reveal new biology 
and therapeutic targets; an approach which has now been widely 
adopted across academia and industry using the latest generation of 
arrayed CRISPR libraries [56]. In summary, academia has played a 
major role in the evolution of HCI capabilities and also has been a 
beneficiary of the overall evolution of HCI technology as a powerful tool 
for new knowledge creation. The academic sector is also strongly posi
tioned to play an important role in the next evolution of HCI through 
continued development of hardware, software and data analysis 

solutions and through contributing novel biological capabilities and 
applications, especially applied to rare diseases. As discussed further 
below, these developments will benefit from strong academic-industry 
collaboration and partnerships. 

3. Evolution and impact of high content imaging: an industry 
perspective 

HCI is applied as a mainstay in the pharmaceutical industry across 
the discovery pipeline, from target identification through to candidate 
selection. 

Two-dimensional culture multicolour imaging assays remain the 
assay category of primary impact in industry as gauged through assay 
abundance, application in progressing discovery programs, and influ
ence on decision making. Largely this is due to simplicity of setup and 
direct biological relevance of the readout from the target-specific probes 
used. Yet even within these assays, methodological evolution is evident 
through increased frequency of use of primary cell, co-cultures, or iPSC- 
derived models. The trend to utilise more physiologically relevant cell 
models early in the discovery pipeline has been achieved through scal
able cell factories for iPSC line generation and differentiation, in addi
tion to simplified isolation procedures and commercial availability of 
primary cell sources. Indeed, this change typifies industry priorities by 
internalizing academic protocols to streamline methods and achieve 
robustness for routine, scalable implementation. 

In industry, safety and efficacy profiling have been a primary bene
ficiary of adoption of HCI, especially when coupled with complex in 
vitro models. HCI in organoids in particular has shown application in 
screens for efficacy, lead identification, and safety [11,57]. Deploying 
these HCI methods aims to reduce high attrition rates of candidate 
therapeutics. A meta-analysis of 2003–2011 clinical phase data indi
cated only 10% of candidates entering clinical trials resulted in FDA 
approvals; with efficacy or safety cited as predominant reasons in first 
review response [58]. The probability of launch statistics are reflected 
within more recent analyses and as a sub-category, Phase II failure, in 
particular, has been identified as 79% attributable to safety and efficacy 
[59]. To provide more predictive safety assessment in early discovery, 
HCI has been adopted in predictive toxicology, with industry groups 
overwhelmingly classifying the technology as a current or near-term 
game-changer [60]. In particular, the use of HCI in complex models 
has enabled more accurate toxicological assessment in vitro, such as the 
use of MPS for detecting hepato- and renal-active compounds [61]. HCI 
also provides readouts in MPS liver models labelled with general cell 
health, lipid and bile canalicular markers to provide evidence of 
different mechanisms of hepatotoxicity [62]. The economic benefit of 
full integration of such assays is placed at billions of dollars per annum 
[62], yet it is worth recognising that safety profiling is applicable to 
tens-of compounds rather than hundreds, so it needs to be carefully 
integrated into the discovery pipeline, such as at candidate selection. For 
higher throughput methods that can be utilised in early discovery, 
spheroid systems show improved predictivity over 2D sandwich and 
monolayer cultures [63]; however, despite some assay systems using 
HCI to provide whole-spheroid intensity or volume readouts, more often 
than not, a simpler biochemical readout for cytotoxicity supersedes the 
collection of HCI data [64]. An expected revolution in the outlook of 3D 
HCI data use is likely to come from adoption of next-generation hard
ware; most notably light sheet microscopy adaptations that provide 
plate-based imaging facility, reduced photodamage, and improved 
acquisition speeds for suitable z-sampling to enable accurate measure
ments of 3D substructure [65,66]. The reader is referred to the Hard
ware section of this article for further discussion on light sheet and 
options available. Other HCI methods are under exploration to improve 
predictions of drug toxicity, which are particularly effective when 
augmented with omics data sources [38,67]. A notable 
academic-industry partnership, the Omics for Assessing Signatures for 
Integrated Safety (OASIS) consortium, is leading efforts in 
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hepatotoxicity prediction involving image profiling and exemplifies a 
cross-sector effort with many additional benefits including rich anno
tation sources of in vivo studies against anonymized compounds, assay 
standardization, and generation of large, well annotated image data
bases that can be leveraged by AI/ML methods. 

The category of assays relating to image-based morphological 
profiling are at a stage of maturity where they are now being practically 
applied in industry discovery efforts. Recursion Pharmaceuticals are 
driving the largest-scale application of image-based profiling, having 
placed Cell Painting at the centre of their Phenomics strategy for hit 
identification and progressing five assets to clinical trials in 2022. 
Recursion releases large annotated image reference sets, (e.g., RxRx3), 
which are composed of millions of images of tens of thousands of unique 
perturbations. RxRx3 alongside the JUMP consortium, and OASIS pro
vide support for innovative method development and benchmarking of 
computational approaches, which has had a large impact in extending 
utility of Cell Painting data [68] (Fig. 3). 

To maximise the capacity of these large datasets as inference sys
tems, the HCI field requires understanding of the image acquisition 
landmarks (i.e. perturbation replicates, sample size, plate distribution, 
incubation time, etc.) and analytical methods by which newly collected 
datasets might integrate seamlessly and demonstrate sufficient statisti
cal similarity in order to reliably annotate perturbation cell states. An 
underappreciated but critical aspect when generating data to build or 
query these large datasets relates to careful quality control in wet-lab 
procedures. Indeed, for this reason industry settings are optimizing 
generation of high quality profiles by adopting standardised wet-lab 
approaches to align with the latest academic protocols (e.g., JUMP 
Cell Painting), full process automation, and incorporating nuisance 
compound sets [69,70]. Furthermore, industry is improving data quality 
by systematically addressing batch effects through adoption of effective 
quality controls including cell line stratification, plate position ran
domisation, cell counts, staining distribution, and image quality control 
measures such as focus scoring. 

Image profiling exemplifies the inextricable integration of HCI 
within industry, as it has improved drug discovery pipelines by expe
diting target identification through to medicinal chemistry, providing an 
opportunity for in silico drug prediction, and serving as a cornerstone for 
AI-driven drug discovery. 

4. Evolution of high content image analysis 

In an image analysis experiment, a data scientist outlines, or seg
ments, objects of interest, such as cells, in order to extract numerical 
descriptors suitable for downstream statistical and machine learning 
analyses. While there is no one-size-fits-all pipeline for all imaging 
datasets, we are converging on a canonical image processing pipeline 
(Fig. 4) [71–73]. Evolving organically, the pipeline includes image 
quality control, image correction, cell segmentation, cell feature 
extraction, and batch effect correction. After the mid-2000s, various 
methods have been developed to perform each step in this pipeline, but 
one of the most common approaches uses CellProfiler, which is a 
user-friendly, flexible tool that facilitates image data processing with a 
dynamic plugin system to incorporate and improve various pipeline 
steps [74]. CellProfiler allows automated image analysis and object 
segmentation using intensity thresholding and watershed-based 
methods. In addition to image segmentation, CellProfiler orchestrates 
the pipelines, and decoupling each of these steps has led to independent 
optimization and many analysis improvements. 

As a first step after image acquisition, image quality control can be a 
manual and laborious process that is user subjective. Efforts to auto
matically flag cells based on poor focus and debris using machine 
learning and simulated data have reduced manual requirements thus 
increasing throughput and confidence in biological findings [75,76]. 
Next, image correction, which adjusts technical artefacts based on image 
capture, is an often overlooked step that is growing in appreciation and 
importance [77,78]. The most common adjustment is illumination 
correction (IC), which adjusts for uneven lighting induced by the mi
croscope; most often a phenomenon called vignetting, which causes the 
edges of the field of view to be darker than the centre [78]. There are 
currently several different methods that adjust for illumination [77–79], 
and different microscopy approaches may require unique solutions (e.g. 
modelling live cell imaging for increased photobleaching over time) 
[79]. While increasing in importance, the field currently lacks ap
proaches to systematically identify if illumination correction is needed, 
if it was successfully applied, or the extent to which it impacts biological 
findings. Furthermore, in multiplex imaging applications, stains can 
have overlapping emission wavelengths resulting in bleed through 
across spectral channels, which is particularly important to adjust for 
when measuring colocalization between structures. However, efforts to 

Fig. 3. The Cell Painting assay utilises a collection of fluorescent dyes to label multiple subcellular compartments, image analysis algorithms can then measure 
multiple features in each of these compartments to create a phenotypic fingerprint for every cell before and after compound treatment. Compound or genetic-induced 
phenotypic fingerprints can be interrogated by multivariate statistics or machine learning models to classify cell phenotypes and predict compound mechanism-of- 
action, toxicity and activity across other assays and model systems. Consortia and/or public datasets which are exploiting Cell Painting data include: JUMP-CP 
(https://jump-cellpainting.broadinstitute.org/); RxRX3 (https://www.rxrx.ai/) and OASIS (omics for assessing signatures for integrated safety consortia). 
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compensate for this bleed through are also in early days and require 
more methods, software development and statistical benchmarking 
[80]. Following image quality control and adjustments, data scientists 
extract high-dimensional cell biology features, which describe various 
phenotypes, cell states, and technical artefacts. There are existing tools 
to extract so-called hand-engineered features, which are based on clas
sical computer vision algorithms [81–84]. There are also emerging so
lutions, based on deep learning, which promise to learn more 
informative morphology features [35,85-91]. While deep representation 
learning is a hot topic, it is still yet to be seen if these features will 
supplant the more interpretable hand-engineered features that the 
computer vision community has developed over decades. Additional 
methods, based on batch effect correction are also becoming increas
ingly important as data size increases, and it is unclear at what stage to 
perform batch correction either as an image-processing step or post 
feature extraction [92]. 

Cell segmentation is a particularly challenging and important step 
because of the huge variability in imaging equipment, imaging modal
ities, fluorescence markers, and therefore it has received a lot of research 
attention. It is clear that different segmentation algorithms impact how 
data scientists identify objects [93], but to the extent that segmentation 
impacts biological insights is yet to be determined. In the early days of 
HCI, most segmentation methods were based on manual thresholding, 
which is time consuming and error-prone. Localization of object centers 
can also be achieved using the minimum spread square loss function 
[94]. Today, many machine learning methods have emerged to auto
mate segmentation of HCS data. Most segmentation models are inspired 
by a U-Net architecture that utilizes downsampling encoding layers 
followed by upsampling decoding layers to segment the image. [95] 
U-Net also includes skip connections between the encoder and decoder 
to preserve the spatial information from the input image, which im
proves segmentation accuracy. For example, the popular models 
StartDist [96], CellPose [97], DeepCell [98] are modified U-Net archi
tectures that were trained on huge datasets and are now capable of 
segmenting a wide variety of image data with minimal or even no 
training. Furthermore, software tools such as ICY [99], QuPath [100], 
and ilastik [42] offer the user more flexibility to train their own algo
rithms. These approaches often require significant user input for chal
lenging datasets with high confluence or heterogeneous cytoplasm, 
which makes generalization to other datasets difficult. However, once 
trained on a particular dataset they can be improved through 
fine-tuning. In summary, deep learning can learn the important features 
required for accurate cell segmentation directly from raw images and 

can handle heterogeneous imaging data capturing various staining and 
imaging modalities. It remains a rich research area with many groups 
proposing new approaches, both generic and cell type specific, which 
extends beyond high content imaging to other data modalities such as 
electron microscopy, pathology, and spatial transcriptomics [95,97, 
101–103]. 

Due to the rapid advances in imaging technologies, we are able to 
capture different biological scales that consist of highly variable struc
tures from organelles and molecules to organoid and vascular 
morphology. To date, bespoke methods are often required to segment 
these images [104]. However, we anticipate new deep learning models 
to be able to segment various types of objects. For example, the recent 
release of the Segment Anything Model (SAM) by Meta [105], which is 
not restricted to biological imaging, could be a very promising direction. 
For example, within a few clicks we were able to obtain very accurate 
segmentation of challenging tissue image data (Fig. 5). 

Other emerging tools include an academic-industry partnership with 
the University of Wisconsin-Madison and Microsoft presenting their 
segmentation model Segment Everything Everywhere All At Once 
(SEEM) [106]. These large models based on transformer architectures 
offer zero-shot learning for a variety of generalized tasks, including cell 
segmentation, and may represent the next generation of segmentation 
approaches able to immediately generalize to diverse datasets. In the 
coming months and years, our field will continue stress testing and 
fine-tuning these approaches in their application to HCS segmentation. 

5. Evolution of high content data analysis pipelines towards 
multiparametric and phenotypic profiling applications 

In 2004, Perlman et al. published a landmark paper describing the 
ability of multiparametric high content phenotypic measurements to 
derive compound fingerprints, which showed that compounds with 
similar mechanism-of-actions induced similar cell morphologies [17]. 
Early examples from academia and industry explored the use of machine 
learning classifiers to predict mechanism-of-action of phenotypic hits by 
comparing the similarity of their high content phenotypic profiles with a 
reference library of well-annotated compounds [22,23]. Further devel
opment of high content phenotypic profiling assays combined with 
multivariate statistics and machine learning led several academic groups 
and academic-industry collaborations to further demonstrate the utility 
of image-based phenotypic profiling in discriminating phenotypes [22, 
23,107–109]. These initial screens generated biological insights from 
terabytes of imaging data and were no doubt important and useful 

Fig. 4. Standard HCI experimental pipeline. After 
experimental design (A) scientists perform wet lab 
work to acquire high content cell images, which then 
requires several canonical image analysis steps. Cell 
segmentation is optional, but will allow single-cell 
profiling downstream. After image featurization, (B) 
scientists perform all the image-based profiling steps, to 
prepare data for downstream analyses. (C) This full 
pipeline must be orchestrated by reproducible software 
tools to ensure data provenance and to enable bench
marking. Both wet lab and dry lab biologists must be 
included in all processes from experimental design to 
results interpretation.   
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applications. However, the analysis pipelines and software infrastruc
ture to handle this early data deluge were underdeveloped. This kicked 
off a scientific arms race between data collection and data analysis, and 
the cycle continues today as larger and larger datasets are continuously 
generated that outpace our ability to fully analyze them. As we are 
screening more and more drugs, we are also being humbled to learn that 
finding effective drugs with HCS is difficult, and therefore, we are 
pairing increased data collection with concurrent improvements in 
phenotypic profiling methods and software with the expectation that 
better infrastructure and computational approaches yield higher value 
screens. Novel hit calling or ranking methods that can be applied to Cell 
Painting profiles are of particular interest. Existing metrics, for example 
scalar projection, have been successfully used to rank profiles against on 
and off-perturbation phenotypes [110]. However, many of these mea
sures have limitations and the field will benefit from increased collab
oration with experts in mathematical disciplines to build improved 
approaches of similarity ranking. 

Our increased ability to analyse high content data and thus derive 
insights from phenotypic profiling applications involve advancing 
method development at each step in the processing and analysis pipe
lines. After extracting thousands of features from each image or cell 
object, a data scientist must apply a bioinformatics pipeline to process 
these features, preparing them for downstream discovery. Much like 
with image analysis, this data analysis strategy has evolved organically 
within academic and industry labs [71]. Scientists and engineers have 
developed specific software tools for HCS data processing including 
Pycytominer [73], bioprofiling.jl [72], Phenonaut [111], and Strato
MineR [112] which use either open source or closed source strategies. 
Canonically, the bioinformatics steps include single-cell processing to 
aggregate features within each well, metadata annotation, normal
isation, feature selection, and consensus signature discovery (Fig. 4B). If 
images were not flagged in the image analysis steps, these pipelines can 
also filter single cells to remove incorrect segmentations, debris, out of 
focus cells, or other issues that may confound results. HCS routinely 
measures millions to billions of single cells, which makes single cell 
analysis extremely challenging as current data analysis infrastructure 
scales poorly to this many data points. Therefore, the aggregation step, 
while inherently losing single-cell heterogeneity information, is 
currently required. The aggregation step may also remove the need for 
additional quality control filtering as single cells will not contribute 
much when transforming features to their median value. Nevertheless, 
while the promise of microscopy is its inherent single cell nature, we will 
only realize this promise in HCS by developing new scalable software 
and methods to leverage single cell information, which are currently 
being developed [113]. 

A decade ago, building a method and demonstrating utility was good 

enough for high impact. While not universally the case now, it is much 
more impactful to release methods with usable, well documented, 
version controlled software. This software facilitates method applica
tion, development, and benchmarking and lives on to be further devel
oped well beyond method publication. We have seen this success with 
CellProfiler [4] and FiJi [114] and now Napari [115], as software 
evolves much faster than print. In addition to software for methodology, 
we also require software for reproducible orchestration of data analysis 
pipelines. CellProfiler serves as an image analysis orchestration engine, 
but is one that requires extensive biological expertise and experience 
with manual parameter toggling. Pipelining software such as snakemake 
[116], Workflow Description Language (WDL) [117], or nextflow [118] 
will enable rapid pipeline development, repurposing, and bench
marking, but there are currently no existing orchestration engines 
tailored specifically to full HCS data analysis pipelines (Fig. 4C). 
Benchmarking each individual pipeline step is also incredibly chal
lenging and requires standard benchmarks the field agrees upon. It is 
possible to test each individual step in isolation, but until we test how 
each step impacts the overall HCS end goal of quantifying phenotype, 
it’s difficult to determine and compare performance. To date, most 
large-scale screens analyse their data with bespoke pipelines that are 
presented separately from data with questionable reproducibility. Soft
ware like AnnData [119] facilitate scalable data for specific scientific 
ecosystems, but the emerging paradigm is for language agnostic data 
types based on the Apache Software ecosystem to maximise program
ming language cross-compatibility and cloud computing [120]. 

Another important step in analysing HCS data is the ability to 
effectively link features to images in visualizations. Effective data 
visualization plays an important role when communicating results for 
facilitating biological interpretation. General-purpose tools, such as 
heatmaps or t-SNE plots, do not fully capture the structural nature of cell 
image data, and few tools have emerged to tackle these domain-specific 
challenges. For example, PhenoPlot [121] and the subsequent ShapoG
raphy [122], allow generating pictorial quantitative representation of 
data using glyph visualisation. The tools map images to cell-like struc
tures which enable easier interpretation (Fig. 6). The user can design 
their own structure in a web based app depending on the parameters 
they are extracting from the images. Other tools that allow data inter
action in a graphical user interface include Mineotaur [123], Facetto 
[124], or Loon [125]. These tools link quantitative data points with raw 
image data to identify key trends in cell image features. 

Data analysis advances developed for HCS applications are extending 
into cell biology studies more broadly, as the increasing volume of ex
periments are collecting datasets that outpace our ability to analyse 
everything by eye [126]. Accelerating this life cycle, publicly-available 
repositories dedicated to large-scale imaging data are coming on the 

Fig. 5. The general-purpose Segment Anything Model (SAM) can accurately segment mammary ducts in Breast Ductal Carcinoma samples just with 5 clicks. (A) 
Represents raw image. (B) Represents SAM generated segmentation masks. 
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scene (see section: The role and evolution of image data repositories and 
sharing standards), which increases the pace of method and software 
development and increases our agility and pace at fully leveraging HCS 
data to discover effective treatments. 

6. The role of data integration and multiomics 

The opportunity for integration of imaging and omics data is that 
information from integration will be greater than the sum of parts. 
Omics platforms have been deployed but integration remains an active 
area of research that will benefit from further academic-industry 
collaboration and the use of new frameworks for analysis. Multiomics 
refers to the collection and use of readouts from multiple omics tech
nologies, aiming to capture the complete state of (macro-)molecules 
present in the measured biological substrate [127]. Practically, this re
fers to genomics, transcriptomics, proteomics, metabolomics [128], and 
commonly includes phenomics derived from HCI/HCS and other data 
sources which might provide complementary information on cell states. 
AI/ML literature uses the more general term “Multiview” to refer to 
using multiple representations or “views” of an underlying system state 
capturing information across different timescales, resolutions and with 
different batch effects and biases. It has been demonstrated multiple 
times that combining omics data, to derive cellular state, results in the 
addition of unique complementary information, enhancing performance 
in prediction tasks [129,130]. As earlier noted, roughly half of studied 

genes produce a detectable morphological change [50,131], and 
therefore it is often seen as the job of complementary omics to fill these 
blindspots. As well as providing a more complete detection of cellular 
responses, Joyce and Bernhard [132] document a pairwise matrix of 
omics views and resolve the potential biological insights achievable for 
all pairs including enzyme annotations, regulatory complexes, binding 
sites, gene regulatory networks, and functional annotations. Whilst 
powerful, complementary views are costly to generate in terms of time, 
reagents and data analysis requirements. This has typically limited 
multiomics to the bookends of the drug discovery pipeline. At the 
beginning of the pipeline, target validation makes heavy use of mul
tiomics [133], applying multiple techniques to ensure perturbation of a 
given target leads to the desired therapeutic response. At the opposite 
end of the pipeline, candidate validation aims to collect extensive in
formation on the most promising treatments, ensuring they are hitting 
the correct targets with little or no off-target effects and low toxicity 
[134,135]. Traditionally, the middle of the pipeline where throughput is 
critical, has not been augmented by the collection of multiomics data, 
However, this is now changing as speed of data acquisition and analysis 
increases, assays improve, automation increases in scale, and costs 
decrease. Scientists are collecting more imaging data alongside other 
omics technologies, which are transcending the traditional single 
readout high throughput screening setups. With continued development 
of assay technologies, increased multiomics throughout the discovery 
pipeline would allow many benefits, such as earlier triage of problematic 

Fig. 6. Examples on data visualisation using ShapoGraphy (www.shapography.com). (A) Representation of cell signalling in the membrane, cytosol and nucleus in 
HeLa cells using symbols and colour. (B) Features of tumour or organoid features such as cellularity, invasion and size by mapping data to a circle-shaped object. (C) 
Representation of changes in wound healing assay (white rectangle) and associated number of cells based on colour. 
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treatments, prioritisation of the most promising agents, and the overall 
ability to make better informed decisions during the discovery process. 
Thus, HCI is a prime candidate for further integration into the entire 
drug discovery pipeline. 

Currently, science is embracing multidisciplinary applications of 
techniques from diverse fields, including information theory, computer 
science, machine learning and statistics, for integration of different 
omics views aiming to improve predictions over single omics/single 
view applications. Whilst many approaches exist, they can all be placed 
into three broad categories as defined by Rappoport [136]; early-, mid- 
and late-stage integration. Early integration combines different views in 
a pre-processing step isolated from any prediction task. Examples of this 
include simple concatenation of features across views [130], while more 
involved transformations align correlated features across views [137]. 
Mid-integration refers to techniques in which feedback from the pre
diction task is used to direct the transformation and joint embedding of 
views in a shared phenotypic space [138]. Finally, late integration 
covers approaches which carry out predictions on individual views and 
then unify predictions using a mechanism like consensus scoring [139, 
140]. Another example of late integration is correlating phenotypes 
discovered in images to other omic data measuring comparable samples 
which can be applicable to single and bulk datasets [141]. Extensive 
reviews of multiomics integration techniques may be found in literature 
[136,142,143]. 

With such a wide choice of integration approaches available in 
literature, there is no clear choice of what is subjectively ‘best’, which 
cannot be determined without a comprehensive benchmark matching 
the omics views available to the researcher, experimental setup and 
prediction task. Integration techniques that work well for certain omics 
views are unlikely to be performant across different pairs, triplets or 
higher order groups. A benchmark prioritising powerful omics to pair 
with phenomics and a selection of prediction tasks would be a valuable 
asset to all within the HCI community. While compound mode of action 
prediction is arguably the most prioritised task in HCI and drug dis
covery, large public datasets are only now becoming available to 
benchmark AI/ML techniques applied to HCS data [51,68]. Critically for 
multiomics integration, benchmarking using HCI requires pairing with 
omics views from different sources, which will likely increase batch 
effects. 

While a common integration task aims for better predictions, one 
view may also be used to predict another, with examples demonstrating 
the use of small molecule structure [144,145] and HCI [146,147] to 
predict proteomics profiles. The use of fast low cost technologies like 
HCI to make predictions in this manner allows application of well sup
ported tools and databases outside of the collected omics technology 
ecosystem, allowing application over more of the drug discovery 
pipeline. 

7. The role and evolution of image data repositories and sharing 
standards 

In HCS experiments, scientists collect a large amount of data, which 
makes tracking both the data itself and information about the data 
challenging. This information about data, also known as metadata, is 
critical for reproducibility, especially given the high costs and low 
success rates of these experiments. This need for reproducibility is even 
more critical given the current reproducibility crisis in many fields. In 
our era where experiments fail to replicate more often than not [148], 
we must continue to report as much metadata as possible, using stan
dardized identifiers [149]. Recently, researchers have proposed a Rec
ommended Metadata for Biological Images (REMBI), which aims to 
provide metadata guidelines for diverse microscopy communities, begin 
discussion about standardising metadata identifiers, and promote reuse 
of microscopy datasets [150]. Over the past five years, more emphasis 
has been placed on sharing these large datasets, which has increased the 
importance of tracking metadata information and reproducibility. These 

efforts all fall under the umbrella of FAIR research, which aims to make 
data Findable, Accessible, Interoperable, and Reusable [151]. Ulti
mately, the results and utility of the initial HCS are validated down
stream in the efficacy of the hits that were prioritised for follow-up 
characterization. Therefore, the scale and lag time to validation makes 
assessing experimental reproducibility especially challenging. 
Conversely, the reproducibility of the computational analyses is easier to 
track since it can be directly tested, however, this requires providing 
version-controlled code for the full pipeline and version-controlled 
computational environments. 

Metadata standards and improved file types are important for the 
growth of data sharing and reuse, but the heterogeneity of microscopy 
data makes it challenging to keep track of all the different items. These 
include microscopy parameters, cell culturing conditions, assay mate
rials, perturbation and other treatment details, amongst others. 
Emerging standards for these identifiers are improving computational 
analyses and machine readability to facilitate data reuse. Ten years ago, 
such standards did not exist, which made most data non-interoperable or 
required significant effort to convert metadata to the same language. 
Furthermore, the evolution of file types is ongoing, with TIFFs being the 
de facto file type shared in the past. While they contain images alongside 
important metadata, they can be slow to load and are not optimised for 
cloud computing. Emerging file types that fit the needs of academia and 
industry in HCI are actively being developed, such as OME-ZARR [152]. 
File types are also evolving for intermediate data types in table format, 
moving from CSV to database standards and more performant data 
based on Arrow (e.g., Parquet) that are now being tested and imple
mented. It is crucial to consider interoperability when designing new file 
types to ensure that they are widely adoptable by the scientific 
community. 

Data sharing resources are now equipped to handle large high- 
content datasets, enabling researchers to share and access a vast 
amount of data with ease. One such resource is the Image Data Resource 
(IDR), a growing service that currently stores over 100 studies totalling 
about 400 TB of images of reference cell and tissue imaging data [153]. 
IDR can version control your data and provide a direct object identifier, 
allowing anyone to use and cite the data deposited. There are several 
other microscopy data sharing resources available including, EMPIAR 
[154,155], BioImage Archive [156], and Cell Image Library [157] but 
IDR is the primary third-party host for HCS data. More recently, the 
Registry of Open Data on AWS (RODA) is now storing large HCS data
sets, with the JUMP Cell Painting consortium currently hosted there. 
There are also several in-house data sharing repositories, such as the 
Allen Institute for Cell Science Explorer, Recursion RxRx [158], Broad 
Bioimage Benchmark Collection [159], and various others operated by 
academic institutions. While there are many advantages to self-hosted 
data repositories, they tend to have less emphasis placed on metadata 
standards and identifiers, and enforcing compliance can be more chal
lenging. There remains a need for further standardization and interop
erability between these repositories and sharing platforms. As 
mentioned earlier, the heterogeneity of microscopy data makes it chal
lenging to develop and implement standardised metadata and file types. 
Continued efforts to develop and improve these standards will be crucial 
in promoting efficient and widespread sharing of high-content micro
scopy data. However, with the growth of these data sharing resources, 
the possibility of microscopy data reuse and secondary analyses is 
growing, which will lead to increased use in validating experiments and 
testing model generalizability. In addition to sharing raw images, it is 
also helpful to share other high-value intermediate data types, such as 
illumination corrected images, embeddings, and single-cell and bulk 
feature extraction methods, which may be shared in other repositories. 
Wilson et al. describes more considerations for sharing microscopy im
ages [154] . 

The field of microscopy data sharing is still in its early stages, but 
there has been significant progress made over the past decade and the 
evolution of these repositories and standards will likely continue to be 
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shaped by advances in technology and changes in research practices. For 
example, the growing use of AI/ML in image analysis may require new 
approaches to data sharing, data management, and a heightened 
emphasis on standardization and reproducibility. One important chal
lenge is ensuring that the data used to train machine learning models is 
consistent and well-documented. If the data are not standardized, then 
the models will not be generalizable to other datasets, leading to poor 
performance and limited impact. Another challenge is the interpret
ability of machine learning models in the context of microscopy data. 
While these models can often achieve impressive results, it is important 
to understand how they are making their predictions, especially in the 
context of drug discovery where a false positive or negative could have 
significant consequences. Efforts to develop interpretable machine 
learning models and standards for reporting their performance and 
predictions will be crucial in ensuring their utility in this field. There
fore, it will be important to continually evaluate and adapt image data 
repositories and sharing standards to ensure they meet the needs of the 
scientific community. As we continue to share and analyse high-content 
microscopy data, we will accelerate the pace of drug discovery and ul
timately lead to faster, more cost-effective cures for a wide range of 
diseases. 

8. Future perspective of high content imaging hardware and 
software 

Hardware: Following a sustained period of improvements to com
mercial HCI instruments over several decades, accelerated technology 
development over the past 5 years has delivered significant advances in 
capability. These advances include; improved 3D imaging as exempli
fied by the OperaPhenix (Perkin Elemer); ImageXpress-confocal HT.ai 
(Molecular Devices) and CellInsight CX7 LZR Pro (ThermoFisher) plat
forms; unprecedented speed such as that demonstrated by endeavor GT 
(Araceli) and new capabilities that combine single cell imaging and 
sample picking for multiomics analysis provided by the Single Cel
lome™ System SS2000 (Yokogawa) (Fig. 1). Other advances include 
development of bespoke HCI platforms specifically designed for small 
model organisms such as Zebrafish (VAST BioimagerTM (Union Bio
metrica) [160]. 

Despite these significant advances the development and imple
mentation of HCI infrastructure has often struggled to keep pace with 
the ever increasing diversity and complexity of a new generation of ever 
evolving and more sophisticated 3D models and microfluidic devices 
[161,162]. Thus, a number of HCI challenges and gaps remain including 
acquisition and analysis of 3D models with single cell and subcellular 
resolution at depth to explore the heterogeneity of complex 3D multi
cellular structures in both fixed samples and longitudinal monitoring in 
live cell assays [163]. Multiphoton microscopy is currently the most 
powerful technique for realising single cell fluorescence imaging and 
segmentation at depth, however conventional multiphoton microscopy 
is too slow for high throughput screening applications across sufficient 
sample numbers. Research efforts are underway to increase the speed of 
multiphoton microscopy through parallelized signal acquisition using 
multiple laser beams or time-gated camera detection systems, which 
have demonstrated proof-of-concept including in automated multiwell 
plate formats [164–166]. Other advances in HCI hardware development 
from academia include adaptation of “light sheet” microscopic imaging 
for multiwell plates [167]. Light sheet fluorescence microscopy (LSFM) 
uses a thin sheet of light to excite only fluorophores within a single 
planar volume in front of the objective [168]. Light sheet microscopy 
therefore provides true optical sectioning capability facilitating 3D im
aging with reduced photobleaching and phototoxicity of the sample. 
Oblique Plane Microscopy (OPM) is a “fast light sheet” microscopy 
technique that uses a single high numerical aperture microscope 
objective to both illuminate a tilted plane within the specimen and to 
collect fluorescence from the tilted illuminated plane [169,170]. As 
OPM is compatible with a conventional microscope, it can be used to 

image conventionally mounted specimens on coverslips, tissue culture 
dishes or standard multiwell plates. The OPM has demonstrated its rapid 
multiwell plate imaging capability to image 3D responses of tumour 
spheroids to glucose over time and to map and quantify cell morpho
logical plasticity in 3D [65,171]. Alternative platforms which are 
commercially available include the Lattice Light Sheet 7 from Zeiss 
which delivers an easy-to-use automated light sheet instrument suitable 
for multiple sample carriers including multiwell plates. 

The development of multidisciplinary consortia encompassing 
expertise in photonics, automated microscopy, image analysis and 
biology to deliver open source hardware and software solutions that can 
be exploited by both commercial and academic institutions is well 
placed to accelerate the evolution and adoption of high content imaging. 
The MACH3CANCER (advancing Microscopy to Accelerate under
standing of Complexity and Heterogeneity of 3D Cancer) is one such 
consortium funded by cancer Research UK (https://mach3cancer.org/). 
The tools and resources developed by MACH3CANCER, which will be 
shared with the community, include: new single cell-resolved open 
source high content analysis platforms (openHCA) specifically designed 
for 3D cell cultures and organoids. The open source approach will enable 
other laboratories to replicate these capabilities and ensure that the 
openHCA instrumentation can be easily upgraded to new functionality 
(with no barriers due to proprietary hardware or software) and be in
tegrated with other HCA capabilities including commercial platforms. 
Another academic-industry consortium includes the Transformative 
Imaging for Quantitative Biology (TIQBio) partnership which aim to 
provide advances in high resolution imaging of 3D models in an un
perturbed manner. 

Software: As more complex multiparametric data analysis ap
proaches have evolved for HCI, analysis pipelines may include tech
niques integrating ‘traditional’ algorithms spanning statistics, signal 
processing and information theory to techniques from AI/ML including 
classification, regression, pooling, sampling, normalisation, batch 
correction, imputation, transformation, and application of generative 
methods (see section “Evolution of high content data analysis pipelines to
wards multiparametric and phenotypic profiling applications” for more de
tails). Closed-source proprietary tools exist and allow non-expert users 
to apply pipelines including such techniques like BIOVIA Dassault 
Systèmes’ Pipeline Pilot, Perkin Elmer’s HC profiler (powered by TIBCO 
Spotfire®), and HCS StratoMineR [112]. However, the significant con
tributions of academia to the field highlights the cutting- and often 
bleeding-edge nature of research being carried out within these in
stitutions, requiring unhindered access to source code, intermediate 
data and the ability to migrate analysis to a variety of compute platforms 
unrestricted by licensing and access controls. Critically, integration of 
new literature techniques is rapidly enabled with the drive towards open 
access publishing and adherence to FAIR principles [151], resulting in 
source code for new techniques often being readily available in public 
repositories. Rapid iteration and integration of techniques is massively 
helped in an open-source software ecosystem, where contributions from 
many experts in their fields may flow into one well structured and well 
managed software package for unrestricted use, evaluation, and 
improvement by the community. Continued evolution of high content 
analysis includes the need to integrate HCI with multiple data types (see 
section “The role of data integration and multiomics”) [130]. Data inte
gration workflows for multiomics data take many forms across academia 
and industry and efforts with limited resources can easily fall short of 
data integration best practices, with additional data and processing re
quirements dramatically increasing pipeline complexity upon combi
nation and processing of high content imaging, proteomics, 
metabolomics and other omics data. Open source initiatives such as 
Phenonaut [111] aim to standardise multiomics and single omics 
workflows operating on feature data, but will only be successful in 
establishing standards and driving the field forward in an open, 
collaborative, and FAIR way with community involvement addressing 
new methods, benchmarking, and best practices. 
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9. Current gaps and recommendations 

While significant advances in HCI analysis have evolved to extract 
multiple features and classify a broad variety of cell phenotypes in 2D 
cultures at single cell level, the majority of phenotypic profiling studies 
are performed on aggregated whole well/cell population level. This is 
particularly true for 3D model systems where high content phenotypic 
profiling at the single cell level at sufficient imaging depths remains to 
be fully realised. Improvements in imaging hardware for 3D resolution 
and software solutions for handling single cell level data are required to 
study the heterogeneity of cellular response and distinct cell types in 
more complex 2D co-culture and 3D cell models. Such developments 
will support the next evolution of high content phenotypic profiling 
applications using more complex and physiologically relevant model 
systems. The evolution towards open source HCI hardware could deliver 
new HCI instruments and upgrades at reduced costs supporting expan
sion of the technology beyond core screening facilities and increased 
adoption of robust quantitative cell biology across industry and aca
demic research groups. The development and evolution of HCI hardware 
may also support a paradigm-shift in the development of screening ap
plications beyond standard multiwell plate formats toward more 
bespoke and physiologically relevant 3D models and microfluidic 
devices. 

The field of single cell technology is advancing rapidly, evolution of 
HCI in parallel with other single cell technologies including integrating 
image-based single cell phenotypic classification followed by cell pick
ing and collection to feed into single cell transcriptomics and proteomics 
profiling is becoming realised with new platforms such as the Yokogawa 
SS2000, Beacon(R) optofluidic system, and Sartorius CellCelector plat
forms. However, this is an area that requires additional investment to 
deploy across research programs and user groups and maximise the full 
potential to embrace the heterogeneity in cell phenotypes within bio
logical samples and more comprehensively explore cell state transition 
at an integrated phenotypic, transcriptomic and post-translational 
pathway level. 

One of the benefits of HCI and image-based phenotypic profiling is 
low cost when applied at scale relative to genomic, transcriptomic, and 
proteomic profiling technologies. This disparity however limits mul
tiomics integration resulting in gaps in methods for data integration and 
analysis. Further investment in generation of orthogonal high 
throughput transcriptomic and proteomic profiling technology and data 
sets which can be paired with appropriately matched HCI data would 
support benchmarking of different data integration approaches. In
vestments in the provision of publicly available multiomic datasets 
across platforms at different scales to integrate with HCI datasets is 
required to evolve the field of quantitative biology and HCI applications. 

A concerted move away from development of bespoke image analysis 
pipelines which are separate from the data towards integration of lan
guage agnostic data types associated with raw image data will maximise 
cross comparison and quality assessment of analysis approaches, adop
tion across multiple research programs and institutions and thus 
increased scalability. 

10. Conclusion 

Academic and industry contributions to the field of HCI have been 
complementary and synergistic. Consortia activity and collaboration 
which provide precompetitive tools and datasets have been crucial to 
continued evolution of the field and include new applications and 
broadly adopted strategies for precise classification of cell phenotypes 
and prediction of biological mechanism-of-action and in vivo toxi
cology. These developments have contributed to significant evolution of 
HCI technology and applications to answer fundamental basic research 
questions, perform discovery science, and to improve decision making 
across discrete stages of the drug discovery process. 

Further interdisciplinary collaboration between data science, 

biological assay development and HCI hardware solutions will continue 
to evolve the field towards delivering higher quality and more quanti
tative solutions which also support more disease relevant and mecha
nistically informative drug discovery applications. The past three 
decades since the inception of HCI has been witness to substantial im
provements in technology and applications which have stimulated and 
continue to stimulate increased adoption of HCI across research in
stitutions in academic and industry sectors. The future of HCI looks 
bright: undoubtedly the replacement of manual microscopic imaging 
and analysis with automated solutions provide a step change in 
increased robustness of biomolecular imaging and functional biology 
studies, which are less prone to bias and artefacts due to low sample 
throughput. This step change and the availability of a greater variety of 
HCI platforms and open source software and data analysis solutions will 
ensure the trajectory of increased HCI adoption continues. The rapid 
development of new technologies from the fields of 3D biology, CRISPR 
gene-editing, human iPSC, multiomics, single cell technologies and AI/ 
ML are converging with HCI contributing to a new era of cell biology and 
drug discovery (Fig. 2). Together these developments promise to 
contribute significant benefits across multiple research areas including 
data science, cell biology, chemical biology and healthcare which in turn 
will support continued investment in HCI and further enhance the sig
nificant impact that HCI contributes to biomolecular and biomedical 
research. 
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[41] Rämö P, Sacher R, Snijder B, Begemann B, Pelkmans L. CellClassifier: supervised 
learning of cellular phenotypes. Bioinformatics 2009;25:3028–30. 

[42] Berg S, Kutra D, Kroeger T, Straehle CN, Kausler BX, Haubold C, Schiegg M, 
Ales J, Beier T, Rudy M, et al. ilastik: interactive machine learning for (bio)image 
analysis. Nat Methods 2019;16:1226–32. 

[43] Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, Ohl P, Sieb C, 
Thiel K, Wiswedel B. KNIME: the Konstanz Information Miner. Data analysis, 
machine learning and applications studies in classification, data analysis, and 
knowledge organization. Springer Berlin Heidelberg; 2008. p. 319–26. 

[44] Gustafsdottir SM, Ljosa V, Sokolnicki KL, Anthony Wilson J, Walpita D, 
Kemp MM, Petri Seiler K, Carrel HA, Golub TR, Schreiber SL, et al. Multiplex 
cytological profiling assay to measure diverse cellular states. PLoS ONE 2013;8: 
e80999. 

[45] Bray M-A, Singh S, Han H, Davis CT, Borgeson B, Hartland C, Kost-Alimova M, 
Gustafsdottir SM, Gibson CC, Carpenter AE. Cell Painting, a high-content image- 
based assay for morphological profiling using multiplexed fluorescent dyes. Nat 
Protoc 2016;11:1757–74. 

[46] Jamali N, Tromans-Coia C, Abbasi HS, Giuliano KA, Hagimoto M, Jan K, 
Kaneko E, Letzsch S, Schreiner A, Sexton JZ, et al. Assessing the performance of 
the Cell Painting assay across different imaging systems. Biorxiv 2023. https:// 
doi.org/10.1101/2023.02.15.528711. 

[47] Laber S, Strobel S, Mercader J-M, Dashti H, Ainbinder A, Honecker J, 
Garborcauskas G, Stirling DR, Leong A, Figueroa K, et al. Discovering cellular 
programs of intrinsic and extrinsic drivers of metabolic traits using 
LipocyteProfiler. Biorxiv 2021. https://doi.org/10.1101/2021.07.17.452050. 
2021.07.17.452050. 

[48] Fredin Haslum J, Lardeau C-H, Karlsson J, Turkki R, Leuchowius K-J, Smith K, 
Mullers E. Cell Painting-based bioactivity prediction boosts high-throughput 
screening hit-rates and compound diversity. Biorxiv 2023. https://doi.org/ 
10.1101/2023.04.03.535328. 

[49] Cross-Zamirski JO, Mouchet E, Williams G, Schönlieb C-B, Turkki R, Wang Y. 
Label-free prediction of cell painting from brightfield images. Sci Rep 2022;12: 
10001. 

[50] Rohban MH, Singh S, Wu X, Berthet JB, Bray M-A, Shrestha Y, Varelas X, 
Boehm JS, Carpenter AE. Systematic morphological profiling of human gene and 
allele function via Cell Painting. eLifeeLife 2017;6. https://doi.org/10.7554/ 
eLife.24060. 

[51] Chandrasekaran SN, Ackerman J, Alix E, Michael Ando D, Arevalo J, Bennion M, 
Boisseau N, Borowa A, Boyd JD, Brino L, et al. JUMP Cell Painting dataset: 
morphological impact of 136,000 chemical and genetic perturbations. Biorxiv 
2023. https://doi.org/10.1101/2023.03.23.534023. 2023.03.23.534023. 

[52] International Human Genome Sequencing Consortium. Finishing the euchromatic 
sequence of the human genome. NatureNature 2004;431:931–45. 

[53] Perlman ZE, Mitchison TJ, Mayer TU. High-content screening and profiling of 
drug activity in an automated centrosome-duplication assay. ChemBioChem 
2005;6:145–51. 

[54] Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, Hinkle G, Piqani B, 
Eisenhaure TM, Luo B, Grenier JK, et al. A lentiviral RNAi library for human and 
mouse genes applied to an arrayed viral high-content screen. CellCell 2006;124: 
1283–98. 
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