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ABSTRACT: Understanding multicomponent binding interac-
tions in protein−ligand, protein−protein, and competition systems
is essential for fundamental biology and drug discovery. Hand-
deriving equations quickly become unfeasible when the number of
components is increased, and direct analytical solutions only exist
to a certain complexity. To address this problem and allow easy
access to simulation, plotting, and parameter fitting to complex
systems at equilibrium, we present the Python package
PyBindingCurve. We apply this software to explore homodimer
and heterodimer formations culminating in the discovery that
under certain conditions, homodimers are easier to break with an
inhibitor than heterodimers and may also be more readily depleted.
This is a potentially valuable and overlooked phenomenon of great
importance to drug discovery. PyBindingCurve may be expanded to operate on any equilibrium binding system and allows definition
of custom systems using a simple syntax. PyBindingCurve is available under the MIT license at https://github.com/stevenshave/
pybindingcurve as the Python source code accompanied by examples and as an easily installable package within the Python Package
Index.

■ INTRODUCTION
Gaining insight into molecular interaction systems at
equilibrium by simulation and by fitting of experimental data
is of fundamental importance for basic biology and drug
discovery. The advantages provided in experimental planning
alone justify its importance, allowing expectations of signal
strength and species abundance to guide experimental, assay,
and instrument setup. In this manuscript, we document the
creation of PyBindingCurve and apply it to the most useful
protein−ligand systems in biology and drug discovery, deriving
equations for the resultant population abundances at
equilibrium. Beyond the simplest systems, manual derivation
of direct algebraic solutions becomes difficult and we therefore
turn to symbolic manipulation in software to derive solutions.
These systems are described by polynomial equations with
multiple solutions, presenting the problem of not only
choosing the correct solution but also choosing the correct
solution throughout an experiment where the physically
relevant solution may change throughout a titration. In
addition, there are no general direct solutions to polynomials
of order greater than 4,1,2 limiting the scope for deriving direct
analytical solutions to highly complex systems. We therefore
turn to minimization and root-finding techniques, transforming
the problem into one of constrained optimizations. We
compiled these solutions with methods to simulate titrations,
plot results, and fit parameters for experimental value
determination into a Python package named PyBindingCurve,

allowing simple simulation, plotting, and fitting of systems at
equilibrium. Multiple freely available and commercial software
packages exist for plotting and simulating systems;3−5 however,
most are closed-source, hindering development and integration
into existing workflows or require real solutions to be derived
or transferred from the literature,6,7 a difficult process,
especially with the added problem of selecting the correct
polynomial root representing physically relevant solutions.
Having an open-source framework to simulate, fit, and
interrogate these systems brings with it great advantages
allowing automation and integration into existing software
pipelines and analysis methods.
All binding events may be described over time by an on-rate

(with units: M−1·s−1), describing the rate of association, and an
off-rate describing the complex falling apart into its constituent
species (units: s−1). The interplay between complex association
and dissociation in a closed system creates a dynamic
equilibrium containing a steady state of species abundances.
We may combine these rate constants describing the
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population at equilibrium into the dissociation constant, KD
(units: M), defined simply as the off-rate divided by the on-
rate. Conveniently, when one binding site is present, such as in
1:1 binding, this value denotes the concentration at which 50%
of a species will be in complex with its binding partner. Lower
values denote higher affinity interactions and therefore tighter
binding. Often, we may derive direct analytical solutions to the
concentration of the complex formed. A full derivation of 1:1
binding from mass balances is available as Supporting eq 1 and
can be found in the literature.8−11 Simulation of binding curves
with this equation requires no special treatment, with only one
polynomial root being physically relevant across all possible
experimental parameter values. This provides a direct method
for calculating complex concentrations over a range of system
parameters.
In addition to 1:1 binding, a common system is 1:1:1

competition, commonly used in drug discovery efforts to
detect new chemical entities displacing a known binder. As an
example, a fluorescently labeled ligand in complex with a target
protein may have its fluorescence anisotropy measured.12,13

Displacement of the labeled ligand by another inhibitor
competing for the same binding site will remove the labeled
ligand from the complex resulting in a change of anisotropy as
a function of complex concentration. The 1:1:1 competition
binding equation may be solved in the same manner as
demonstrated in the Supporting Information for 1:1 binding
with changes made to the mass balances and results in a third-
order or cubic equation requiring significantly more manipu-
lation but remaining feasible by hand. This results in three
possible polynomial roots as solutions, one of which may be
entirely excluded as never physically relevant, while the choice
between the other two is dependent on the ligand and
inhibitor KDs relative to each other. This solution is also readily
available in the literature.14 Additionally, the breaking of
heterodimers with an inhibitor can be represented by this 1:1:1
competition system, where protein monomers can be thought
of as a protein and ligand, which upon binding become a
heterodimer while the inhibitor competes for a binding site on
one of the protein monomers.
Studies in biology often involve oligomers, or repeating

units, the conceptually simplest of which is a homodimer: two
identical monomer units binding to each other. Homodimers
have been characterized as having distinct properties setting
them apart from heterodimers, which comprise two chemically
different proteins. In general, the binding interfaces of
homodimers are larger with more interacting residues,
specifically enriched with hydrophobic amino acids.15

Mathematically understanding this complex and its behavior
is critically important for fundamental biology. It is therefore
surprising that we were able to find only one instance in the
literature of derivation of a direct, analytical solution to
homodimer formation at equilibrium.16 Upon first considering
homodimer formation, it appears a simpler case than the 1:1
protein−ligand binding as only one starting species is involved,
two units of which transition to become a single dimer upon
complexation. An important consideration exists when a dimer
undergoes dissociation and two monomers are produced,
increasing the concentration of free monomer at double the
dissociation rate. The same is true in reverse for complexation
with two monomers consumed for the creation of one dimer.
The derivation of a direct analytical solution to dimer
formation can be found in Supporting eq 2. Like the solution

of the quadratic equation in 1:1 binding, one polynomial root
is always physically correct.
We were unable to find the literature providing direct

analytical solutions for homodimer breaking with an inhibitor.
This is surprising as fundamental biology and drug discovery
efforts often seek to break apart homodimers with small
molecules or peptides mimicking interaction surfaces. At this
level of complexity, solutions can be found using symbolic
manipulation with programs such as Wolfram Mathematica.17

See the Supporting Information codes 1−4 for Wolfram
Mathematica code solving the 1:1, 1:1:1 competition, dimer
formation, and dimer breaking systems, respectively. In highly
complex systems, such as homodimer breaking, we may
observe the physically correct solution “switching” from one
polynomial root to another as titrations progress. To avoid this
problem, we use minimization and root-finding in an approach
similar to that taken by Royer18 to solve the systems expressed
as constrained optimization problems (See the Supporting
Information Code Listings 5−8). PyBindingCurve allows
custom systems to be defined and solved using minimiza-
tion-based techniques; simply specifying “P+P<−>PP” defines
homodimer formation, while “P+L<−>PL, P+I<−>PI” defines
a 1:1:1 competition. More complex systems such as ternary
complex formation are also easily specified:19 “P+C<−>PC, P
+U<−>PU, PC+U<−>PCU, PU+C<−>PCU” (see the
Simulation of Custom Binding Systems section in the
accompanying Supporting Information). Additionally, systems
may be solved kinetically as a system of ordinary differential
equations (ODEs, see the Supporting Information Code
Listings 9−12). PyBindingCurve automatically utilizes the
fast, direct analytical solutions to systems where possible,
otherwise minimization, and root-finding techniques for
systems expressed as constrained optimization problems are
used. Kinetic solvers are not used by default but can be
specified. Below, we document the result of using PyBinding-
Curve to explore the striking differences between homo- and
heterodimer breaking and its implications. The PyBinding-
Curve software package available at https://github.com/
stevenshave/pybindingcurve allows simulation, fitting, and
derivation of system parameters for a range of predefined
and custom-definable systems.

■ RESULTS AND DISCUSSION

Using the PyBindingCurve package, we investigated the large
and surprising differences between homo- and heterodimer
formations. Understanding of these differences has the
potential to impact fundamental biology, with better use of
tool compounds and an improved system biology-based
understanding of biological pathways. We must first consider
dimer formation, best illustrated by a theoretical experiment,
where an increasing concentration of monomer is titrated.
While experimentally it is not easy to increase the monomer
concentration, the experiment could be performed in reverse
with a buffer titrated into a known starting amount of
monomer and dimer concentrations monitored. A dimer half-
life would need to be considered, ensuring an equilibrium is
achieved before each dimer measurement is recorded.
Performing the experiment for heterodimers is the simplest
conceptually, whereby a known and equal starting concen-
tration of each monomer “A” and “B” is diluted, giving a total
number of particles in a constant volume of N. To directly
compare homodimer complexation with this system, we must
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use twice the homodimer “H” monomer concentration to
achieve the same number of particles as N.
Figure 1A shows the dimer formation as a function of

monomers for dimers with a dissociation constant (KD) of 100
nM. It is evident that with the same number of particles
present, more homodimers than heterodimers are formed. This
is expected as homodimer monomers can form a dimer with
any other monomer. Heterodimers are only formed when two
complimentary monomers come together, effectively halving
the concentration of binding partners that a heterodimer
monomer encounters. Figure 1B illustrates profound differ-
ences observed upon dimer breaking with an inhibitor, the
understanding of which is of crucial importance for drug
discovery and fundamental biology involving the application of
drugs and tool compounds for dimer breaking. We can observe
a system where dimer complexation starting with a total of 2
μM homodimer monomer with a dimerization KD of 100 nM
has an inhibitor titrated into it with a KD of 10 nM to
homodimer monomer. Comparing this to a similar system

containing 1 μM of both components A and B of a
heterodimer monomer (total 2 μM monomer concentration)
with a similar dimerization inhibitor with a KD of 10 nM to A,
we observe striking differences. First, as expected from the
dimer formation plot in Figure 1A, the starting dimer
concentration of a homodimer is higher than that of a
heterodimer. Again, this can be explained simply by the fact
that a homodimer monomer can bind any other homodimer
monomer, whereas, with a heterodimer monomer, a monomer
must encounter a complimentary monomer for complexation
to occur. As the titration continues, an interesting crossover
occurs at around 2 μM inhibitor concentration with an equal
amount of homo- and heterodimers present. As inhibitor
concentration increases, the amount of heterodimer present is
greater than that of homodimer. This effect can be explained
by the increased abundance of inhibitor binding partners in the
case of homodimers. As in the previous explanation, particles
of homodimers are encountered at twice the rate of particles of
appropriate heterodimer monomers by the inhibitor diffusing

Figure 1. Homo-vs-Heterodimer making and breaking. (A) Dimer formation with a KD of 100 nM as a function of monomer concentration. As a
homodimer (broken line) contains two copies of the same monomer, the total monomer concentration is twice that shown on the x-axis.
Heterodimer formation (solid line) contains two different monomers with the concentration for each monomer given by the x-axis. (B) After
monomer titration to 1 μM as shown in (A), or effectively 2 μM in the homodimer case, the resultant complex has an inhibitor (I0) titrated against
it. The inhibitor has a KD of 10 nM to one heterodimer monomer (solid line) and the same KD to homodimer monomers.

Figure 2. Homo-vs-heterodimer dissociation heatmaps showing dimer concentration between 1 μM (red) and 0 μM (blue) as a function of
changing dimer and inhibitor affinity expressed as pKD between 1 nM and 1 mM. Right panel shows the difference between the homodimer and
heterodimer abundance heatmaps, with magenta representing less homodimer than heterodimer at a constant 5 μM inhibitor concentration.
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in the solution, causing more homodimer monomer−inhibitor
complex than heterodimer monomer−inhibitor complex. For
the same amount of inhibitors in the solution, a greater
proportion complexes with monomers in the case of
homodimers, removing a free monomer capable of complexing
with another monomer into a dimer. This is interesting as,
initially, the increased dimerization of homodimer is greater
than the effect of increased homodimer monomer−inhibitor
formation. There is, however, a point in inhibitor titration
where this balance shifts, and the effect of the increased
homodimer monomer−inhibitor formation is greater than the
increased dimerization, shifting the dynamic such that
homodimers may be more easily dissociated apart by
inhibitors. A final observation can be made, in that the
depletion of homodimers is more complete than that of
heterodimers at high concentrations of inhibitors. Again, this
can be explained by the abundance of inhibitor binding
partners, each monomer in the case of homodimers vs one
monomer in the case of heterodimers. Further exploring the
switch of homo- vs heterodimer ease of dissociation, we may
visualize areas of affinity space where breaking one is easier
than the other. The left panel of Figure 2 shows the
concentration of homodimer formed (red is 1 μM, blue is
zero homodimer) with a starting concentration of 2 μM
monomer and a range of inhibitor and dimerization KDs along
the x- and y-axes, respectively, expressed as pKDs. The center
panel of Figure 2 shows the same for heterodimer, with 1+1
μMs of the two monomers as a starting concentration and a
range of inhibitor KDs. The right panel of Figure 2 shows the
difference between homodimers and heterodimers, green
indicating that the homodimer was harder to break and
magenta indicating that it was easier to break.
In the development of PyBindingCurve, we iterated through

many approaches to simulating protein−ligand systems as their
complexity increased. Starting with hand-crafted direct
analytical solutions, increased system complexity led to a
computer-generated code requiring tracing approaches to
choose the correct solution. As complexity increased and
solutions to high-order polynomials were no longer found,1,2

such as in 1:4 protein−ligand binding, we transitioned to first
using iterative kinetic models describing systems as ODEs to
minimization problems expressed as constrained system
optimization problems. PyBindingCurve automatically chooses
the most appropriate method to solve common binding
systems. The use of constrained optimization led to methods
capable of solving user-defined binding systems specified in the
simple text, allowing applicability of PyBindingCurve to
practically all biological systems. Having such capabilities
present in an open-source package promotes the freedom to
use, integrate, and improve PyBindingCurve.
The striking difference in the behavior of homodimers vs

heterodimers could have a significant impact on drug discovery
efforts. Simply dissemination of the knowledge that near-
complete depletion of homodimers is easier than with
heterodimers is valuable, before making any numerical
predictions or analysis. We would like to emphasize the take-
home message from our findings: if faced with a choice, drug
discovery programs may wish to prioritize homodimers over
heterodimers as targets as a route to more efficacious therapies.
Most drugs in clinical development fail from the lack of
efficacy, which is strongly connected to achieving the necessary
drug concentration at the site of the target in human tissues. If
a lower concentration of a drug acting on a homodimer can

achieve equal or better effects, this might increase drug efficacy
and open a new avenue in drug discovery. We believe a major
strength of PyBindingCurve is direct programmatic access for
exploration of these binding systems in Python, currently one
of the most popular and fastest-growing programming
languages. This helps allow insights as demonstrated in the
homo- vs heterodimer formation example, which would not
have been easily discovered using existing offerings of the
traditional curve fitting and simulation software.
We envision the continued growth and development of

PyBindingCurve. A detailed user guide with tutorials and API
documentation is available in the Supporting Information
accompanying this manuscript and online (https://
stevenshave.github.io/pybindingcurve/).

■ METHODS
We implemented PyBindingCurve in Python (version 3.6.8),
developing methods capable of simulating, plotting, and fitting
parameters to experimental results for 1:1, 1:n (where n is 1−
5), 1:1:1 competition, and homodimer and heterodimer
systems. In the testing and validation process for these
analytically solved complex systems with direct methods, we
encountered considerable numerical instability20 and so use
arbitrary precision arithmetic to a high degree of accuracy
using the mpmath (version 1.1.0) package.21 Internally,
PyBindingCurve uses a combination of direct analytical
solutions for simple binding systems (computationally quick
to simulate) and minimization and root-finding to solve
constrained systems when dealing with more complex systems.
To derive the Python code for simple systems with direct
analytical solutions, we used Wolfram Mathematica to derive
solutions from sets of mass balances and binding equations
(see the Supporting Information Code Listings 1−4). These
solutions were written out, and the program MathematicaE-
quationToPython was used to convert the equations to Python
functions (available at https://github.com/stevenshave/
MathematicaEquationToPython). Systems that proved unsolv-
able using symbolic manipulation in Mathematica are
integrated into PyBindingCurve using constrained optimiza-
tion approaches. The Supporting Information Code Listings
5−8 illustrate the Python code used to construct these
constrained optimization systems and simulate 1:1, 1:1:1
competition, homodimer formation, and homodimer breaking.
The code present within PyBindingCurve is also capable of
parsing custom-defined systems and transforming them into
constrained systems that are easily solvable. These systems are
solved using the find_roots method from the mpmath package.
In addition to system simulation at a single set of starting
conditions, we created helper functions to enable plotting over
a range of species concentrations. Parameter fitting is achieved
using the LMFit package,22 enabling the calculation of
parameters such as KD from experimental data.
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