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Virtual screening overview: tools and
approaches

Ligand discovery can be regarded as a simple matching

problem: we would like to find a small molecule (ligand)

with the appropriate shape and charge properties to bind

effectively to a target protein of interest. High-throughput

screening (HTS) provides one possible experimental route to

a solution and libraries consisting of over 1 million

compounds can be tested in days. Computational screening

provides a complementary approach and with massively

parallel processing, millions of compounds per week can be

tested. Estimates of the number of potential small molecule

drug-like compounds vary between 1018 and beyond 1063

(Lipinski and Hopkins, 2004). Consequently, for any specific

target protein, even if the results from each assay and

each docking run were totally reliable (which is not the

case), it would still be impossible to test binding for every

potential ligand. The commonly accepted Lipinski criteria

(Lipinski et al., 1997) for orally active drug-like molecules

set physicochemical property limits to increase the prob-

ability of good drug bioavailability. Drug-like molecules are

expected to have a molecular weight (MW) p500 Da, p5

hydrogen bond donors (HBDs), p10 hydrogen bond accep-

tors (HBAs) and a CLog P p5 (the octanol-water partition

coefficient calculated as described by Moriguchi et al. (1992)

(MLogP) p4.15). More stringent criteria have been proposed

for initial searches. For example, Lead likeness restricts MW

to o350 Da and CLogP (the octanol-water partition coeffi-

cient, calculated using the Biobyte program (http://biobyte.

com.index.html) developed by Hansch and Leo) to o3

(Teague et al., 1999). Even these more stringent cutoffs do

little to reduce the astronomical numbers of potential

ligands and exploring such a large-scale-matching problem

will require imaginative computational and experimental

approaches.

Protein targets

Recent reviews have attempted to estimate the number of

druggable proteins in the Protein Data Bank (PDB) (Berman

et al., 2000). Druggable proteins have structural features that

facilitate binding to drug-like molecules. For proteins to

progress from intrinsic druggability to becoming a target

requires drug binding to modulate the biological role of the

protein and to bring about therapeutic benefit (Fishman and

Porter, 2005). Currently available literature identifies 1300

studied protein drug targets from humans and infective
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organisms (Hopkins and Groom, 2002; Russ and Lampel,

2005; Zheng et al., 2006). Estimates of the total number of

druggable targets in the human genome have been made

based on the number of disease genes; these give a total of up

to 1500 targets out of 25 000 in the human genome (Hopkins

and Groom, 2002). Bacterial and viral proteins also provide

targets; published estimates of the number of targets from

infective organisms are well over 1000. This suggests that

there should be a pool of about 3000 drug targets in total

(Zheng et al., 2006).

Of the 1300 currently studied targets, 44% are classified as

enzymes, the most populated biochemical class. A total of

557 enzymes are current research targets and 134 have

proved to be successful targets. Enzymes represent 50% of all

successful targets (Zheng et al., 2006). A total of 280 research

targets have experimentally determined structures with a

specific drug-binding domain (represented by 107-folds),

mainly by X-ray crystallography.

Within the PDB, there are about 250 uniquely different

(that is o10% amino acid identity) well-determined struc-

tures in complex with ‘peptide-ligands’. These represent a

subset of protein–protein interactions where the interaction

is controlled by a linear peptide on one side of the interface.

Table 1 shows some examples of protein–peptide inter-

actions. This group possibly represents the most druggable

subset of protein–protein interactions. Short linear peptides

are more amenable to replacement by small molecule

mimetics. Modulating protein–protein interactions is parti-

cularly attractive due to the pivotal role of such interactions

in cell signal transduction pathways and cell cycle progres-

sion (Fry and Vassilev, 2005; Chene, 2006).

There are a number of publicly accessible sources of

protein–ligand binding affinities and web-based tools de-

signed to aid the extraction of information from databases

containing structural information on protein targets. For

example, the BindingDB is a public, web-accessible database

of measured binding affinities for biomolecules and contains

data generated by isothermal titration calorimetry and

enzyme inhibition (http://www.bindingdb.org/). The Reli-

base database (http://relibase.ebi.ac.uk/) is a web-based tool

for the study of protein–ligand interaction. MSDmotif

(http://www.ebi.ac.uk/msd-srv/msdmotif/) provides a tool

for summarizing structural information on a database of

over 6000 protein–ligand complexes found in the PDB.

Small molecule databases

A number of publicly available small molecule databases

have been established over the last few years. The ligand.Info

database (http://ligand.info) (Grotthuss et al., 2004) is a

compilation of a number of publicly available databases

providing a Meta-Database of over 1 million entries with

calculated three-dimensional (3D) structures and some

information about biological activity. The ZINC database

(http://blaster.docking.org/zinc/) contains over 4.6 million

commercially available compounds in various 2D and 3D

formats (Irwin and Shoichet, 2005). Only compounds with

MW p700 Da, and calculated LogP values between –4 and 6

are stored. Simple Lipinski filters or other discreet subsets of

compounds can be selected.

An ambitious project financed by the National Institutes

of Health has the goal of discovering sets of molecules that

will specifically modulate the activities of the majority of

gene product in the human and other organisms. Fast

expanding databases are now being developed that

contain results from a number of high-throughput screens,

many of which use a set of over 100 000 chemically diverse

molecules. These data are available at NCBI’s database of

small organic molecules at http://www.ncbi.nlm.nih.gov/

sites/entrez?db¼pcassay.

EDULISS, the EDinburgh University Ligand Selection

System, is our in-house relational database that stores over

5 million available compounds, containing data from over

25 chemical catalogues. Of the 5.3 million compounds, 3.8

million are unique. 3D coordinates for each molecule are

stored with over 1500 topological, geometric, physicochem-

ical and toxicological descriptors per compound (Todeschini

and Consonni, 2005). The descriptors can be used inter-

actively to select subgroups of the database and also to

provide profiling information. One approach to identify

unique compounds is to compare the chemical graph of each

compound with the graph of every other. This approach is

extremely computationally expensive. An alternative meth-

od for identifying unique compounds in EDULISS’s large

collection has been developed. A small number of descrip-

tors including a 3D-Wiener index, an electronegativity

descriptor and a polarizability descriptor are used to group

compounds. The resulting small groups of molecules

with identical descriptors can then be compared using a

Table 1 Examples of protein-peptide interactions in the Protein Data Bank

PDB Protein Peptide Peptide sequence Function Reference

1YCR MDM2 p53 SQETFSDLWKLLPEN Antitumour (Vassilev et al., 2004)
1BXL (NMR) Bcl-XL Bak-BH3 GQVQRQLAIIGDDINR Apoptosis (Degterev et al., 2001)
1EBA EPO EPOR GGTXSCHFGPLTWVCKPQGG Anaemia (Qureshi et al., 1999)
1EJ4, 1WKW EiF4e EiF4e-BP RIIYDRKFLMECRN Malignant transformation (de and Graff, 2004)
1AXC PCNA p21 GRKRRQTSMTDFYHSKRRLIFS Antitumour (Gulbis et al., 1996)
1CKA c-CRK C3G PPPALPPKKR Oncogene (Wu et al., 1995)
1GUX Rb tumour suppressor E7 peptide DLYCYEQLN Antitumour (Lee et al., 1998)
1H9O SH2 Penta -peptide XVPML Signal transduction, cancer (Pauptit et al., 2001)
1QZ2 FKBP52 Hsp90 MEEVD Steroid signalling pathways (Wu et al., 2004)
1ELR HOP Hsp90 XMEEVD Signalling pathways (Scheufler et al., 2000)
1YVH c-CBL APS GRARAVENQXSFY Oncogene (Hu and Hubbard, 2005)
1G3F (NMR) XIAP-Bir3 Smac AVPIAQKSE Apoptosis (Liu et al., 2000)
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graph-matching program. A web-based interface for EDULISS

has been developed; this provides a convenient way of

extracting families of compounds with a user-defined set of

properties.

Database profiling and compound selection

The EDULISS database comprises 25 different commercial

and other smaller specialist compound collections. Of these,

some 4.3 million fit the Lipinski ‘rule of 5s’ (Lipinski et al.,

1997). A total of 3.2 million fit the Oprea lead-like criteria

(Hann and Oprea, 2004). The more stringent Astex Rule of 3

is met by 230 000 compounds (Carr et al., 2005) (statistical

profiles of some general descriptors are shown in Figure 1,

descriptor ranges are shown in Table 2). A study by Oprea

et al. (2007) investigated recent trends in the property space

of leads, drugs and chemical probes. Leads are generally

smaller, less complex and have lower LogP than drugs, due to

the inevitable modifications involved in the medicinal

chemistry optimization process.

It is desirable for a set of compounds for docking or assay

to be selected considering both protein target and screening

methodology. Solubility is of key importance for both

bioavailability and ‘screenability’. Experimentally derived

aqueous solubility data are not available for the majority

of compounds in the EDULISS database. Algorithms for

predicting aqueous solubility from structure almost univer-

sally rely on a directly proportional relationship between

LogP and solubility (Jorgensen and Duffy, 2002; Delaney,

2005). It might be appropriate to have a relaxed solubility

requirement (MLogP p4.21) and to include relatively large

compounds (p450 Da) with the aim of finding leads of high

affinity and high specificity for the target. A greater range of

molecular complexity may be explored with a higher MW

cutoff (Schuffenhauer et al., 2006). However, the application

of X-ray crystallography in lead discovery has different

property requirements. The technique identifies fragments

binding to significant regions of the target protein and then

employs fragment growing or linking strategies to improve

potency. Fragments are small molecules, 100–250 Da, with

few functional groups (Rees et al., 2004; Carr et al., 2005;

Hartshorn et al., 2005). In these techniques, virtual hit

ligands are soaked into crystals. Relative protein concentra-

tions are high, necessitating high ligand concentrations.

Solubility problems can be compounded by the practice of

soaking with a fragment cocktail to increase assay through-

put. Virtual screening subsets designed for fragment screens

Figure 1 Molecular property profiles of 5.3 million compounds in the EDULISS database. (a) MW. (b) MLogP. (c) Number of HBDs. (d)
Number of HBAs. Bin sizes for MWs are 5 Da and for MLogP, the number of HBDs and HBAs 1 U. EDULISS, EDinburgh University LIgand
Selection System; HBA, hydrogen bond acceptor; HBD, hydrogen bond donor; MLogP, the octanol-water partition coefficient calculated as
described by Moriguchi et al. (1992); MW, molecular weight
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need to have stringent solubility requirements, MLogP p3.0,

while containing diverse scaffolds decorated with a broad

range of functional groups (Moriguchi et al., 1992).

High-throughput virtual screening

High-throughput virtual screening achieves a high through-

put of test ligands by using simplified non-quantum

mechanical methods without the inclusion of complex

molecular dynamics (Woo and Roux, 2005). Typically, the

virtual screening process follows the steps outlined in

Figure 2. A ligand is selected and positioned into the target

protein-binding pocket in a given ‘pose’ (Muegge and

Martin, 1999). The resultant complex is scored on the basis

of intermolecular contacts to give a predicted strength of

binding interactions (Woo and Roux, 2005). Flexible docking

typically allows sampling of ligand and sometimes protein

conformations during the docking procedure. Rigid body

docking is however much less computationally expensive.

Exploring the conformers of relatively simple molecules

containing only three or four rotatable bonds (using a broad

step size) requires the generation of over 200 starting

conformations to be sampled in order to fully consider the

majority conformational space (Guner et al., 2004). The most

widely used flexible docking tools are GOLD (Genetic

Optimization for Ligand Docking) (Jones et al., 1997), FlexX

(Rarey et al., 1996; Kramer et al., 1999), DOCK (Ewing et al.,

2001), AutoDock (Goodsell et al., 1996), Glide (Friesner et al.,

2004; Halgren et al., 2004) and ICM (Internal Coordinate

Mechanics) (Abagyan et al., 1994). A variety of different

methods are used by the above tools to deal with ligand

flexibility such as genetic algorithms, incremental construc-

tion, simulated annealing and Monte Carlo methods

(Rosenfeld et al., 1995; Vieth et al., 1998). The diversity

exhibited by scoring functions has been used in consensus

scoring is implemented in, for example, X-SCORE (Wang

et al., 2003). Using different but well-performing scoring

functions, the accuracy of consensus methods can be greater

than any individual scheme (Bissantz et al., 2000; Stahl and

Rarey, 2001; Jacobsson et al., 2003; Raymond et al., 2004;

Xing et al., 2004; Feher, 2006). However, ‘artificial enrich-

ment’ is a potential pitfall, with scoring functions selected to

perform well on a specific protein–ligand complex (Verdonk

et al., 2004).

Perola et al. (2004) have reported that energy minimiza-

tion can significantly improve the accuracy of docking poses

found by GOLD (Jones et al., 1997) and ICM (Abagyan et al.,

1994) programs. Our results also showed that there is better

agreement between the docked pose and the crystallographic

pose using rigid body refinement. A ‘good fit’ is defined as an

root mean square distance (RMSD) p2 Å between corre-

sponding heavy atoms of the X-ray structure and the docked

ligand pose.

Virtual screening has proved successful in a number of

projects (Alvarez, 2004; Kitchen et al., 2004; Oprea and

Matter, 2004; Ghosh et al., 2006) (Table 3). One of the major

future challenges is to develop virtual screening methods

capable of identifying ligands that will interrupt protein–

protein interactions.

LIDAEUS as a tool for high-throughput virtual
screening

LIDAEUS, LIgand Discovery at Edinburgh UniverSity, our

in-house high-throughput virtual screening program (Wu

et al., 2003) generates a grid of site points in the binding

pocket of the target protein. Each site point is coloured: HBA,

HBD or hydrophobic, depending on the preferred protein

interaction (Figure 3).

Each molecule selected from the small molecule database

is placed in the binding pocket and atoms of the docked

molecule are matched to site points. An exhaustive fit of a

given number of atoms from the docked molecule onto the

site points is undertaken to identify reasonable poses. These

are stored for subsequent rigid body energy minimization.

Table 2 Descriptor ranges for the EDULISS database of 5.3 million
compounds

Descriptor Max Average Standard deviation

Molecule weight 2180.59 374.28 95.77
Number of bonds 306 47.05 13.05
Number of aromatic bonds 69 13.42 5.97
Number of rings 18 3.14 1.18
Sum of atomic van der Waals
volumesa (Å3)

172.82 29.29 7.71

Number of rotatable bonds 77 5.31 2.73
MLogP 134.05 3.29 3.35
Topological polar surface areab (Å2) 932.34 73.66 42.23

Abbreviations: EDULISS; LIgand Discovery at Edinburgh UniverSity; MLogP,

the octanol-water partition coefficient calculated as described by Moriguchi

(Moriguchi et al., 1992).
aScaled on Carbon atom.
bUsing N, O, S, P polar contributions (Todeschini and Consonni, 2005).

Docking 
LIDAEUS 

Post-Processing 
e.g. Cluster analysis, pose analysis

Selection of Compounds for Assay

Protein Target Database 
EDULISS 
5.3 million 
compounds

Scoring

Figure 2 Steps involved in virtual screening using LIDAEUS.
LIDAEUS, LIgand Discovery at Edinburgh UniverSity.
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Table 3 Examples of hits from virtual screening experiments

Target Virtual screening Example structure* Reference Assay

Carbonic
anhydrase II

FlexX (Rarey et al., 1996)

N
N

S

O

O

NH2

(Gruneberg et al., 2002) IC50 Sub
nanomolar

Bcl-2 DOCK (Ewing et al., 2001)

Br

O NH2

O

O

N

O

O
(Wang et al., 2000; Enyedy et al.,
2001)

IC50 9 mM

CK2 DOCK (Ewing et al., 2001) *

NH

N

OH
O

O

(Vangrevelinghe et al., 2003) IC50 80 nM

Plk1 LIDAEUS (Wu et al., 2003)

SCF3

NO2

N
+

S NH2

O

O
(McInnes et al., 2006) IC50 20 nM

GPCR Five targets 5-HT1A, 5-HT4,
Dopamine
D2, NK1, and CCR3

Compound PRX-93009 scored best for
5-HT1A, no structure shown

(Becker et al., 2004) Ki 1.0 nM

Integrin a4b1 Catalyst (Greene et al., 1994) *

CH3

N
H

N
H

N
H

CH3

O

OH

O

O

(Singh et al., 2002) IC50 1.3 nM

ERb GOLD 2.0 (Jones et al., 1997)

OH O

OH
(Zhao and Brinton, 2005) IC50 0.68 mM

TGT Unity/FlexX (Rarey et al., 1996)

N

N

N

NH

O

NH2

(Brenk et al., 2003) IC50 0.25 mM
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There are various tunable parameters that influence how

thoroughly the binding pocket is explored and hence the

time required to dock a series of compounds. The precision

with which an atom matches the site point, called ‘resolu-

tion’ in this program, is usually set between 0.02 and 0.06 Å

and plays an important role in determining the number of

allowed starting poses. Resolution values greater than 0.06 Å

lead to an exponential growth in the number of starting

poses. Increasing the number and density of the site points

has a similar effect of dramatically increasing the number of

allowed starting poses.

In LIDAEUS, there are two built-in scoring functions, a

force field-based energy function and pose interaction profile

(PIP) a knowledge-based function (Kan, 2007). The energy

function is essentially a linear combination of van der Waals

and hydrogen bonding energies. The geometry-dependent

hydrogen bonding term incorporates salt bridges and

obviates the need for calculating hydrogen atom positions.

The program assigns fixed formal charges to identify

ionizable groups.

The PIP score uses a protein interaction profile that can be

assigned for specific regions of the binding pocket where

explicit types of ligand interactions, for example, a particular

hydrogen bond, are required. The PIP string is a hexadecimal

code containing information about the interactions made

between a given set of protein residues and the docked

ligand. The target PIP string is usually based on a known

X-ray crystal structure in which key features of the protein–

ligand binding interaction have been identified. It is a very

efficient process to match and score the bit strings of the

target interactions against those calculated for the docked

ligand pose. Thus, the PIP score can be used as a component

of the final score to ensure that docked ligands have both

favourable energies of interaction and satisfy specific inter-

actions in their pose.

While LIDAEUS is broadly similar in function to many

docking programs, it differs in two major areas: the extent to

which the fitting protocol can be modified by the user and

the modularity of the system. All definitions within the

program in the way of atom and site point types are soft, that

is, can be customized by the user. This happens at two levels:

one can initially type individual atoms according to

connectivity criteria and then group many or one of these

types into colours used in the pose generation or scoring

process. While using the default definitions allows for

standard searches using atoms grouped into broad classes

such as hydrophobic, HBA and HBD, it is possible to add

specific restrictions.

LIDAEUS exists as a series of modules that run as a UNIX

pipeline, so that initial typing of molecules, posing, scoring

and sorting are all separate programs. It allows us to easily

develop experimental modules and test different scoring

methods. The program is being developed in two areas. The

current flexible docking module is too slow to be used in a

high-throughput mode and this is being addressed. Sec-

ondly, a front end is being written that allows intermediate

users the ability to easily configure customizable features.

Table 3 Continued

Target Virtual screening Example structure* Reference Assay

CDK2 LIDAEUS (Wu et al., 2003)

N

N
S

N

N

N

OH

(Wu et al., 2003) IC50 2.2 mM

Structures marked with an asterisk do not represent those initially identified by in silico screening. Minor chemical modifications have been made and from these

compounds the experimental data determined.

Figure 3 LIDAEUS site points in the binding pocket of CypA in
complex with cyclosporine-A (PDB code 1cwa). Each site point is
coloured depending on the preferred protein interaction (HBA, red;
HBD, blue; hydrophobic, grey). The magenta sphere represents a
key water molecule. Key residues are shown in bold. CypA, human
cyclophilin-A; HBA, hydrogen bond acceptor; HBD, hydrogen bond
donor; LIDAEUS, LIgand Discovery at Edinburgh UniverSity; PDB,
Protein Data Bank.
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The examples discussed in the paper were run on a modest

seven-node cluster. Run times are dependent on the target

protein, the ligand complexity and the site point resolution

set for LIDAEUS. However, representative times for a

database of 50 000 ligands would be 6 h. Using an IBM Blue

Gene/L supercomputer, run times have been reduced from 8

days on a seven-node cluster to 62 min on 1024 processors

using a standard data set of 1.67 million small molecules.

Validation of LIDAEUS docking and scoring
performance

The immunophilin proteins FKBP (FK506 Binding Protein)

and human cyclophilin-A (CypA) have been used as test

systems to develop and test the results from the database

mining program LIDAEUS. Despite having similar biological

profiles, the structure and active site of the two proteins are

very different. Both proteins have peptidyl-prolyl isomerase

activity and speed up the cis–trans equilibration of proline

residues by lowering the barrier to rotation about the imide

bond (Fischer et al., 1993). Inhibition of the enzymatic

turnover of an immunophilin substrate provides a functional

assay for screening potential inhibitors (Fischer et al., 1984).

X-ray crystallographic, surface plasmon resonance, iso-

thermal titration calorimetry and mass spectrometry results

provide complementary techniques for characterizing ligand

binding.

A set of nine chemically related ligands of human CypA

with IC50 values between 2 and 100 mM were used to test

LIDAEUS docking performance (referred to as the test set).

For each ligand, the X-ray structure is known and the RMSD

between corresponding atoms of the X-ray structure and the

ligand structure is used as a measure of fit. Correct docking

poses (RMSD p2 Å) of ligand 1 in the test set (Figure 4 shows

the correlation of PIP score and energy score were E, with

RMSD from X-ray structure for a ligand in the test set) were

all scored 40.93 by the PIP function and their energy scores,

E o�11 kcal mol�1. PIP scores are normalized between 0 and

1: a high PIP score indicates conserved interactions between

those in the X-ray structure and the docked pose. The other

ligands in the CypA test set have similar results, showing

that a combined total score of energy function and PIP

(matching a defined pose iinteraction profile) ranks the

correct docking binding mode higher than alternative poses

(Equation 1).

S ¼ W1E þ W2

X

i

PIPi ð1Þ

S, total score; E, force field-based energy score; PIP, knowl-

edge-based PIP score; W1, weighting factor specific to protein

system; W2, weighting factor specific to protein system.

For a set of nine related cyclophilin inhibitors, the effect of

changing the weights W1 and W2 was examined by system-

atically trialling different values. For this series of com-

pounds, the values that gave the best RMSD fit of the docked

pose compared to the crystallographic pose were weights of 1

and �40 for W1 and W2, respectively. These values proved

useful in identifying a new series of cyclophilin ligands (Kan,

2007).

The role of water in accurate docking

It has been reported in several studies that water-mediated

protein–ligand interactions are an important factor in the

docking process. Ligands can displace water in the active site

or incorporate them as an extension of the protein surface.

The presence of key water molecules can significantly

improve docking performance (Pospisil et al., 2002; Yang

and Chen, 2004). Our results show that eight out of nine

ligands in the test set were correctly docked into near-native

positions by LIDAEUS, while re-docking of six of them was

significantly improved when key water molecules were

included in the protein–ligand binding system. The presence

of the key waters enables the LIDAEUS program to identify

several important interactions involved in the complex and

construct the significant HBA or HBD site points at the

binding atom locations. (Key waters are those that form

bridging H bonds to both protein and ligand molecules).

Ligand 7 (Figure 5) is an example where including water

improved docking performance. The presence of the key

waters enables the LIDAEUS program to construct the

significant HBA or HBD site points at the binding atom

Figure 4 Correlation of PIP score and energy score, E, with RMSD from X-ray structure for ligand 1 of the CypA test set. (a) Plot of PIP score
against RMSD of docking poses with respect to X-ray structure. (b) Plot of energy score, E, against RMSD with respect to X-ray structure. Red
boxes highlight ‘good poses’ that meet scoring cutoffs: PIP score 40.93, energy score o�11 kcal mol�1. CypA, human cyclophilin-A; PIP, pose
interaction profile; RMSD, root mean square distance.
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locations. Furthermore, energy maps contoured with the

presence of key waters better represent the energy distribu-

tion in the local area. Thus, those maps would give the

correct fits lower energy scores than maps generated without

key waters.

Discovery of ligands for immunophilins

In a test to find CypA ligands, the ZINC database (Irwin and

Shoichet, 2005) of 2 million compounds was used as an

input for a LIDAEUS screen looking for compounds that

would match site points in the active site of CypA (two

parallel runs using 60 site points with a resolution of 0.06 Å

and 170 site points with a resolution of 0.04 Å). The top 2000

poses were re-ranked, specifying that hydrophobic inter-

actions with Phe113 and a hydrogen bond to Arg55 were

satisfied, using PIP scoring (Figure 6).

The combined energy and PIP scores ranged from �164 to

�80 (arbitrary units). The top 360 unique compounds were

grouped according to chemical similarity (using molecular

fingerprinting and Tanimoto coefficients) and binding mode

(visually using Pymol). From this analysis, 14 compounds

(all chemically distinct from known cyclophilin inhibitors)

were purchased and tested for inhibition and binding by

peptidyl-prolyl isomerase assay (Kofron et al., 1991). Eleven

compounds showed a statistically significant reduction in

peptidyl-prolyl isomerase activity. Six of the 14 compounds

were ‘hits’ in the peptidyl-prolyl isomerase enzymatic assay;

they inhibited CypA with IC50 values ranging from 27 to

135 mM. Subsequent isothermal titration calorimetry studies

for the best three compounds gave Kd values of 2 to 8mM.

Virtual screening for CDK inhibitors using LIDAEUS

Cyclin-dependent kinases (CDKs) are key regulators in all

steps of the cell cycle and as such are interesting targets for

anticancer therapies. There are already a number of clinical

trials underway with CDK2 and CDK4 inhibitors for a range

of cancers (Collins and Garrett, 2005). The small molecule

inhibitors, roscovotine (Seliciclib) and flavopiridol, are

CDK2 inhibitors and show promising activity in lung cancer.

These drugs target the ATP binding site of the CDKs. This is a

problem in the design of CDK selective drugs, as all nine

CDKs show some homology and most of the active site

residues are well conserved. Another complicating factor in

the design of specific inhibitors is that the active form of the

kinase is induced by complex formation with a partner

cyclin and phosphorylation of a specific threonine residue

located on the T-loop of the kinase. These events cause subtle

changes in active site geometry, which may be important for

inhibitor design.

We used LIDAEUS to carry out a virtual screen of 50 000

commercially available compounds from the Maybridge

catalogue (www.maybridge.com) docked into the active site

of CDK2 (taken from the X-ray structure of the CDK2–

staurosporine complex; PDB code 1AQ1). The predicted top

120 poses based on the docking score were screened at a

fixed concentration of 30 mM using an assay to monitor the

A
C

B

A
C

B

Figure 5 Including water in site point generation. Poses were improved when an essential water molecule was used in the calculation of
energy maps and in site point construction. X-ray structure of the ligand is shown in white and docked poses in pink. (a) Illustrates how one
oxygen atom (O1) from the ligand was put into the experimental position (position A), but the other oxygen atom (O2) was put into position B
instead of position C, as revealed from the X-ray structure. (b) When the important water molecule (in magenta) is included in site point
generation, competent site points set helped bring the oxygen atom to position C.

CypA

Phe113

Arg55

Figure 6 PIP used in the CypA virtual screening experiment. The
top 2000 poses (rank ordered using the energy score, E,) were re-
ranked, specifying that there were predicted hydrophobic interac-
tions with Phe113 (grey lines) and a predicted hydrogen bond to
Arg55 (black dotted lines) using PIP scoring. The diagram shows a
molecule making interactions specified in the PIP. The green dashed
lines are non-covalent interactions not specified in the PIP. CypA,
human cyclophilin-A; PIP, pose interaction profile;
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inhibition of phosphorylation by CDK2/cyclinE. Twenty-

nine percent of the compounds were classed as active by

showing more than 30% inhibition. The most active four

compounds all had a heteroaryl-2-amino-pyrimidine core

and measured IC50 values between 0.9 and 17 mM (Table 4).

X-ray crystal structures of the four hits were obtained and

each was clearly identified in the ATP binding site. A

comparison was made of the calculated docked pose (with-

out any PIP influence) against the experimentally deter-

mined ligand structures. The four ligands were all found to

dock in twisted conformations with a twist of 35o around the

bond between the two aromatic rings. The RMSD atom

against atom fit of the three top scoring docked ligands

versus the experimental structure were 1.6, 1.58 and 3.42 Å

with scores of �24, �23 and �20 kcal mol�1, respectively.

Despite the chemical similarity of these four ligands, they

adopt different binding modes (Table 4) CYC1 and CYC2

form identical hydrogen-bond interactions to ATP: NHy.O

(Glu81), Ny.HN(Leu83) and CHy.O(Leu83). When the

amine group is substituted as in CYC3 and CYC4, the ATP

binding mode is precluded and the ligand flips over to allow

the bulky substituent to point out of the pocket. An

alternative hydrogen bonding pattern is made CHyO

(Glu81), Ny.HN(Leu83) and NHy.O(Leu83). These four

structures provided an excellent starting point for the design

of chemical modifications. Over 40 related structures have

been synthesized to optimize in vivo potency. The tightest

binding ligand of this series, an amino derivative (CYC5),

has a Ki¼2 nM and was shown to induce cell death in

cultured HeLa cells (Wang et al., 2004a, b)

The importance of fine tuning a template structure
in virtual screening

The shape and surface of the target pocket is clearly one of

the most important factors in successful virtual screening

runs. The search for CDK2-specific inhibitors highlighted the

importance of understanding the biological role of the target

protein. A crystallographic study was used to analyse the

structures of six inhibitor ligands belonging to the thiazole-

pyrimidine class, identified by LIDAEUS; both in complex

with monomeric CDK2 and also with the binary CDK2/

cyclinA active complex (Wu et al., 2003; Kontopidis et al.,

2006). The activation of CDK2 by phosphorylation and

cyclin binding causes significant loop and helix movements

but leaves the shape of the ATP binding site relatively

unchanged with a maximum side-chain movement between

1 and 2 Å for residues comprising this pocket. However, these

small differences in pocket shape play a major role in the

relative binding strengths of inhibitors. In some cases, the

same ligands can adopt significantly different poses in

the monomeric and active complexes. Binding enthalpies

of the ligands have been estimated based on calculated van

der Waals and hydrogen bond contacts measured in the

crystal. The measured IC50 values correlate well with the

calculated interaction energy (energy score) for the binary

complex, but show poor correlation with the inactive

complex. This fits with the way the assay has been carried

out—using the active complex. It also suggests that the

enthalpic energy-scoring scheme, using van der Waals and

hydrogen bonding terms, provides a self-consistent measure

of binding strength (Kontopidis et al., 2006).

The discovery of cyclapolin, a potent Polo-like
kinase inhibitor

Polo-like kinase 1 (Plk1) controls the G2/M transition of the

cell cycle by phosphorylating a number of substrates that

function in mitotic progression. Overexpression of Plk1 is

frequently observed in tumours and in downregulation,

using small interfering RNA, has been shown to inhibit

cancer cell proliferation (McInnes et al., 2005). Small

molecule Plk-specific inhibitors are valuable biological tools

and can be used as leads for antitumour agents. A number of

general kinase inhibitors, such as staurosporine and purva-

lanol, are known to inhibit Plk1 (McInnes et al., 2005). After

years of intensive effort by academic and pharmaceutical

research groups, the X-ray structure of the kinase domain has

recently been published (Kothe et al., 2007) in complex with

a pyrazole inhibitor (PHA-680626), which has an IC50 value

of 0.5mM (PDB code 2owb). Before this structure became

available, we had developed a homology model of the kinase

domain of Plk based on the staurosporine-bound conforma-

tion of protein kinase A, which has a 31% sequence identity

(PDB code 1stc). The model was shown to be consistent with

the known structure-activity properties of a series of ligands

which were docked into the binding pocket in a similar

manner to that found in CDK2. LIDAEUS was used to dock a

library of 200 000 commercially available compounds into

the modelled active site of Plk1. A total of 350 of the top-

ranked compounds were then assayed by measuring inhibi-

tion of Plk1 phosphorylation of Cdc25C. A number of Plk1

inhibitors were identified with potencies ranging between

0.5 and 20 mM. A series of compounds (named the cyclapo-

lins) based on the benziathole N-oxide core of the most

active hit were synthesized and provide a consistent

structure-activity relationships for the inhibition of Plk1

(Figure 7). The most active compound in this series showed

significant improvement in potency and has an IC50 value of

2 nM. For this series, there is a good correlation between the

docking score and potency. Treatment of HeLa cells with

cyclapolin1 leads to mitotic cells that show severe spindle

abnormalities (McInnes et al., 2006).

Outlook

The evolution of structure-based lead discovery has been

guided by fashion and by some interesting technological

advances. Twenty-five years ago, we had the first useful

molecular graphics systems that could help medicinal

chemists visualize molecular properties. This technology

along with fast data collection and structure determination

of protein X-ray structures opened the path to structure-

based methods. Ironically, in the mid 1990s, just as this

approach was beginning to bear fruit, the fashion swung to

robotics and high-throughput screening, possibly spurred by

the newly founded discipline of Combinatorial Chemistry,
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which made it possible to generate very large libraries of

compounds. Now in larger organizations high-throughput

screening, in silico and structure-based approaches are quite

well integrated.

The main challenges in docking are still the old problems

of how to efficiently model effects including dielectrics,

entropy, water and flexibility. Advances in computer archi-

tectures may help tackle such problems. However, we also

need to design methods that allow efficient simulation of

these effects. Possibilities include using cliques of side

chain conformations around the active site, and hybrid

molecular modelling/quantum mechanical calculations.

High-throughput virtual screening, using simplified meth-

ods (non-quantum mechanical or complex molecular

dynamics), can already achieve docking rates of over 1 M

compounds an hour (Shave et al., 2008).

Table 4 CDK2 inhibitors discovered using LIDAEUS

Compound Kinase inhibition (CDK2/
cyclin E) IC50 (mM)

Hydrogen-bonding pattern Reference

CYC1

N

N N
H

H

S

Cl

Cl

H

17 ATP hydrogen-bonding pattern:
NHy.O(Glu81), 2.96 Å, Ny.HN(Leu83),
3.64 Å, CHy.O(Leu83), 3.36 Å

(Wu et al., 2003)

CYC2

N

N N
H

H

H

N

S

13 ATP hydrogen-bonding pattern:
NHy.O(Glu81), 2.86 Å, Ny.HN(Leu83),
3.30 Å, CHy.O(Leu83), 3.25 Å

(Wu et al., 2003)

CYC3

N

NN

H

HN
OH

N

S

2.2 Alternative hydrogen bonding pattern:
CHy.O(Glu81), 3.31 Å,
Ny.HN(Leu83),2.82 Å, NHy.O(Leu83),
2.54 Å
Ligand flips over to allow the bulky
substituent to point out of the pocket

(Wu et al., 2003)

CYC4

N

N

N

S

HN

H

CF3

0.9 Alternative hydrogen bonding pattern:
CHy.O(Glu81), 3.31 Å, Ny.HN(Leu83),
2.92 Å, NHy.O(Leu83), 2.58 Å
Ligand flips over to allow the bulky
substituent to point out of the pocket

(Wu et al., 2003)

Colour coding denotes atoms involved in key hydrogen-bonding interactions.
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Technical advances in miniaturization (396-well plates)

and sensitive ligand-binding assays are already generating

very large amounts of binding data, which contribute to

structure-activity relationships. Accurate protein–ligand

binding data can add to our understanding of how proteins

recognize ligands. Identifying the key features of successful

virtual screening calculations can only enhance the chances

of discovering new ligands.
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